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and solved by branch and bound technique. Moreover; a real case study is illustrated in
order to verify its applicability in an automobile producer company. Moreover the sensitiv-

Keywords:
Cellular manufacturing system
Operator assignment

Inter-cell layout ity analysis of proposed model shows that considering the operator assignment problem
Linearization has significant impact on the overall system efficiency.
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1. Introduction

Cellular manufacturing system (CMS) is an application of group technology concept in which parts and machines should
be assigned to production cells with respect to their similarities in production process, design, shape, etc. Designing of a CMS
involves four main steps which each of them can be treated as a separate problem. The first one is cell formation (CF) prob-
lem which concerns with grouping parts and machines in order to minimize some objectives such as inter-intra cell part
trips. The second problem is finding the optimal layout of machines and cells. Actually the overall system efficiency depends
on the optimal layout of machines within cells and cells within the shop floor. The third decision is part scheduling problem
within cells. The main aim of this problem is total process completion time reduction. The recently recognized decision is
operator assignment problem. Operator-related issues such as training, hiring, firing and salary are very important to be ana-
lyzed because of economical limitations in industrial plants. Moreover, Dynamic Cellular Manufacturing System (DCMS) is a
production system which deals with designing cellular manufacturing system over a production horizon while manufactur-
ing parameters such as demand and processing time are different in each production period. Hence, an optimal cell design in
a period may not be optimal for remaining periods in a dynamic environment and optimization of mentioned objectives in
such environment is desirable.

Since, the cell formation problem is the first decision in designing a CMS, many researchers have tried to solve this prob-
lem optimally. Schaller [1] proposed a mathematical model for CF problem in presence of stochastic demands and five heu-
ristic methods were implemented to solve the problem. Majazi-Delfard [2] proposed a nonlinear mathematical model for a
dynamic CF problem based on number and average length of inter-intra cell movements. Since the proposed model is
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completely NP-hard a simulated annealing embedded in branch and cut algorithm was applied to solve the problem. Ameli
and Arkat [3] proposed a pure integer programming to solve the CF problem considering machine reliability and alternative
process routing. Their research shows that the reliability consideration has a significant impact on the overall system effi-
ciency. Furthermore, the integration of CF problem with production planning and system reconfiguration has investigated
by Kioon et al. [4]. A multi-objective mathematical model developed by Zhao and Wu [5]. The objectives of their proposed
model are minimization of cell load variation, total inter-intra cell part trips and total number of exceptional elements. Be-
cause of complexity of given problem, they also implemented a genetic algorithm to solve the problem. Tavakkoli-Moghad-
dam et al. [6] developed a dynamic cell formation problem. In their work three basic meta-heuristics including genetic
algorithm (GA), simulated annealing (SA) and Tabu search (TS) were implemented to solve the model and then these algo-
rithms compared to each other. Also Wu et al. [7] proposed a water flow-like algorithm to solve the CF problem. Their meta-
heuristic solution approach is verified in both solution effectiveness and efficiency aspects in comparison with other solution
methods.

There are many researches in literature which are devoted to inter-intra cell layout problems. Most of these studies have
considered the layout problem as a sequel to the CF problem because of the model complexity. Tavakkoli-Moghaddam et al.
[8] proposed a new mathematical model to solve the inter-intra cell layout problem in presence of stochastic demands. In
their research it is assumed that predefined CF structure is as an input of the inter-intra cell layout problem. Krishnan et al.
[9] investigated three basic steps in the inter-intra cell layout problem while grouping the machines into cells is performed
at first step in order to minimize total inter-intra cell part trips. The second step addresses two heuristic procedures for
grouping the parts into the cells based on the machine grouping solution. At last a GA implemented to determine the best
inter-intra cell layout.

Despite of previous mentioned studies, there are some researches which are proposed for simultaneous optimization of
the CF and inter-intra cell layout problems. Kia et al. [10] proposed a SA algorithm to solve the CF and inter-intra cell layout
problems simultaneously. Also Jolai et al. [11] proposed an electromagnetism-like meta-heuristic to solve the CF problem
integrated with the inter-intra cell layout. Wu et al. [12] proposed a mathematical model which integrates CF, inter-intra
cell layout and group scheduling problems. Because of its complexity, a GA with two heuristic operators is introduced. Arkat
et al. [13] proposed two mathematical models to design a CMS. The first model was based on the integration of CF and group
layout (GL) problems. The second model was integration of the first model which group scheduling (GS) problem which im-
proved total system efficiency.

There are some studies which have considered operator related issues in a CM environment. Satuglu and Suresh [14]
investigated the operator issues consideration in the hybrid CM environment. It involved three main steps. First, the parts
with erratic demands are selected, as special parts to be processed in a functional layout of shop floor. Next, a mathematical
model was proposed to solve the CF problem and at last step, operator assignment problem solved using a goal programming
approach. Integration of CF problem with production planning and worker assignment in a dynamic environment is inves-
tigated by Mahdavi et al. [15]. Also Aryanezhad et al. [16] developed a new mathematical model which deals with concurrent
solving of CF and operator assignment problems. Part routing flexibility, machine flexibility and also promotion of workers
from one skill level to another were considered in their research.

Table 1 summarizes previous recent studies which have dealt with two or three aspects of CMS problem. According to the
Table 1, it can be realized that there is not any attempt to solve the CF, GL and operator assignment problems concurrently.
However, as pointed by Wu et al. [12] these problems are interrelated and their interactions should be considered in order to
achieve an optimal solution.

This paper fills the gap by proposing a new integrated mathematical model. The aim of presented model is to minimize
the total cost including inter-intra cell part trips, machine relocation, hiring, firing and salary of operators in a dynamic envi-
ronment. Also since the proposed model includes non commensurable objectives, a LP-metric approach has been imple-
mented to find the most preferred solution.

The rest of presented paper is organized as follows: In Section 2, a non-linear mathematical model based on mentioned
objectives is proposed and two linearization techniques are implemented to simplify the model. Also the LP-metric approach

Table 1
The summary of literature review.

Study Types of problem Approaches

Cell formation Group layout Group scheduling Operator assignment Concurrent Sequential

Tavakkoli -Moghaddam et al. [8] * *
Krishnan et al. [9] * *
Kia et al. [10] * *
Jolai et al. [11] * *
Wu et al. [12] * * *
Arkat et al. [13] * * *

Satuglu and Suresh [14]
Mahdavi et al. [15]
Aryanezhad et al. [16]
Presented paper

* X ¥ ¥ X X ¥ X ¥ ¥
*

* Kk ¥ ¥
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implemented in this paper will be discussed in this section. In Section 3, the proposed model efficiency will be verified by
four hypothetical numerical examples and a real case study. Moreover; the sensitivity analysis will be conducted followed by
conclusion in Section 4.

2. The mathematical model
2.1. Problem description and crucial assumptions

In this paper a non-linear mathematical model based on three main decisions of cell formation, operator assignment and
inter-cell layout, is proposed. The major assumptions of the proposed model can be categorized into three groups based on
three mentioned problems:

Cell formation assumptions

1. Demand of each part type in each production period, number of cells and lower-upper bounds of cell capacity, are pre-
defined and constant over planning horizon.

. Part trips and Machine relocation costs depend on the inter-cell layout.

. Part and machine transmissions take zero time.

. Machines operating and purchasing costs are not considered.

. Each machine can perform only one operation in a moment.

. The process sequence of each part type is determined and is constant in each production period (routing flexibility is not
considered).

AU WiN

Operator assignment assumptions

7. An operator can be assigned to only one cell. The operator transmission between cells is not allowed.

8. An operator can be assigned to more than one machine based on his/her ability.

9. An operator can be trained to operate with specific machine in a production period by spending a training cost.
10. An operator can be hired or fired in each period independently.
11. Training is performed between periods and it takes zero time.

Inter-cell layout assumptions
12. Number of cell candidate locations is predetermined and it is constant over planning horizon.
13. Cell establishment cost and time are assumed to be zero.

2.2. Notation

Indices and their relative upper bounds

I Number of machines
] Number of parts
C Number of machine cells should be constructed
G Number of candidate locations to be a cell (G > C)
T Number of production periods
OP} Number of operations required by part j in period t
K number of available operators
ii Index for machines (i=1,...,I)
j Index for parts j=1,...,J)
cc Index for machine cells (c=1,...,C)
t Index for production periods (t =1,...,T)
g g Index for a candidate locations to be a cell (g =1,...,G)
d Index for operations required by part j in period t (d =1, ..., OP]?)
k Index for operators (k=1,...,K)
Input parameters:
i Training cost for operator k to operate with machine i
71 _ { 1; If worker k is unable to operate with machine i in first period
ki— 0, Otherwise
Dj? Demand value for part j in period t
Bf Handling batch size for part j in period t
disgg Distances between two candidate locations g and g’

(continued on next page)

Please cite this article in press as: M. Bagheri, M. Bashiri, A new mathematical model towards the integration of cell formation with oper-
ator assignment and inter-cell layout problems in a dynamic environment, Appl. Math. Modell. (2013), http://dx.doi.org/10.1016/
j.apm.2013.08.026



http://dx.doi.org/10.1016/j.apm.2013.08.026
http://dx.doi.org/10.1016/j.apm.2013.08.026

J 0; Otherwise

Wiy
Saki
Hk

Fk
minh
U, le
uj, I
Uy, I

Decision variables:

M. Bagheri, M. Bashiri/Applied Mathematical Modelling xxx (2013) xxXx—xxx

Pt _ { 1; If operation d of part j be processed by machine i in time period t
=

Processing time of operation d of part j in period t

Salary for operator k to operate with machine i (per hour)

Hiring cost of operator k

Firing cost of operator k

Minimum number of operators should be hired in each production period

The upper and lower machine capacity for cell ¢

The maximum and minimum number of operators required by machine i

The maximum and minimum number of machines which can be assigned to operator k

Xt = { 1; If machine i is assigned to cell c in period t,
~ 1 0; Otherwise,

vl { ; If cell c is located in location g in period ¢,
cg - 0

Otherwise,

B — { !
k71 0; Otherwise,
; { 1
T = :
0; Otherwise,
s — {1
k™10, Otherwise,

; If operator k is hired in period t,

; If operator k is assigned to machine i in period t,

; If operator k is assigned to cell c in period t,

7t { 1; If operator k is unable to operate with machine i in period t (t > 2),
ki =

0; Otherwise.

2.3. Objective function and constraints

The 0-1 non linear programming model for the CMS design is presented as follows:

Subjected to :

C
> Xie=1 Vit
c=1

M=

I C C G G Df
ZZZZZ {Bj} diSgg PjyiPj g1, Max(X Yo, + Xio Yog —1,0) (1-1)

c Dt | I
> [Bj} max (Zp;d,.xfc + > PlaiXic - 1,0) (1-2)
i=1

i=1

c I G G
D3N max(Xi Yo + Xid ' Yo — 1,0)disgy (1-3)
BT iXiSicZiuthe (1-4)

(hiHi + (1 — h{)Fy) (1-5)

i I K
ZZP}CHD; Wiyt Sa. (1-6)
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> Xie <ue Ve t; (3)
i=1

1

> X =L vet (4)
i=1

K

> h = minh Vt; (5)
k=1

ri; < h,[( vk, i, t; (6)
Sie<h kot (7)
K

dri<u Vit (8)
k=1

K
S =hovit; 9)
k=1

1
> e < Hwe Ykt (10)
i=1

1
> ri = ide Ykt 1)
i=1

C
i < ZXfCS,ﬂC vk, i, t (12)
c=1

C
D Sie =M Ykt (13)
c=1
Z = -r)xZ, vt=1,....,T—1, ki (14)
G
Y =1 vt (15)
g=1

C
Sy, <1 vg (16)
c=1
r,S,h,Z,X,Y € {0,1}. (17)

The objective function consists of two main cost categories. The first one is related to part movement costs and the second
one is about operator related issues. The first term of objective function (1-1) minimizes the inter-cell part movement. Term
(1-2) minimizes intra-cell part movements. The third term of the objective function minimizes system reconfiguration cost.
Term (1-4) in the objective function minimizes operators training costs. Term (1-5) is related to operators’ hiring and firing
costs. Finally operator’s total salary is minimized by the last term of the objective function.

Constraint (2) is to ensure that each machine should be assigned to only one cell. Cells capacity is constrained by con-
straints (3) and (4). Constraint (5) ensures that the minimum numbers of operators are hired. Constraints (6) and (7) state
that an operator can be assigned to a machine and a cell, respectively, if has been hired in that period. Minimum and max-
imum number of operators required by each machine is restricted by constraints (8) and (9), respectively. The maximum and
minimum number of machines that each operator can operate with is restricted by constraints (10) and (11), respectively.
Constraint (12) ensures that an operator can be assigned to a machine in a same cell. Actually this constraint restricts the
operator transmission between cells. Constraint (13) guarantees that each hired operator should be assigned to only one cell.
Training effect is taken into account by constraint (14) and it states that the trained operator in a period will not need to
learn again to work with the same machine. Each cell should be assigned to only one candidate location and a location
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can be opened only for one cell. These constraints are stated by constraints (15) and (16), respectively. At last constraint (17)
defines variables type where all are binary variables.

2.4. Linearization

The mathematical model proposed in this paper is a non-linear model because of terms (1-1)-(1-4) and constraints (12)
and (14). As lots of exact solution approaches have been developed for linear models, the proposed model should be refor-
mulated as a pure 0-1 linear programming model by introducing some new variables with auxiliary constraints for solving
the problem in a reasonable computational time. In order to reach a linear model by minimum number of required con-
straints, some techniques are implemented in two steps:

Step 1

Consider the pure quadratic 0-1 term Z = X; x X3 x --- x X, where X; (i = 1,...,n) is a binary variable. It is obvious that Z
can be 1 if and only if all the variables are 1 and otherwise it must be 0. Considering this mathematical point, following meth-
od can be applied by introducing some new auxiliary constraints:

Z<X; Yi=1,...,n,
n

Z=) Xi—(n-1).
i=1

This type of nonlinearity is came into view in terms (1-1), (1-3), (1-4) and set constraints (12) and (14). So let define new

binary variables XYng, RZ},;, XS} QY which are computed by following equations:

nycg = Xfcyig Vi,c,g,t;

RZy =112 Vi k,t;
XSt = XLSL Vikc,t:

Qe = MXSiRZy; Vi k,c,t.
By considering these equations, the following auxiliary constraints should be added to the proposed model:

XYi, < Xi. Vicgt, (18)
XY, <Yi Vicgt, (19)
XYig <Xie+ Y —1 Vicgt, (20)
RZ, <rly Vikt, (21)
RZ,, < Z,; Vi k¢, (22)
RZy =1 +Z; — 1 Vikt, (23)
XShe < Xi Vi k,c.t, (24)
XSie < Sie Vik,c.t, (25)
XS = X +S.—1 Vikc,t, (26)
Qi < hy Vikc,t, (27)
Q. <XSh, Vi k.t (28)
Q. <RZy Vik,c,t, (29)
Qi = hi + XSi + RZi; =2 Vi k,c,t. (30)

Step 2
The max function in terms (1-1)-(1-3), can be linearized by replacing an additional variable and two auxiliary constraints
as follows:
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min T min Z
St: — St
T = max(X, 0) Z=X
Z=0
By using this technique, let define new binary variables M{ ., Nig, Ei,vqy Which are replaced by following equations:
Micgi’c’g’ max(xyltcg + XYI 'c'g! ] 0) Vi: l , G, C/7g1g ; t7

Nj;. = max (ijd,xfc + ZPf aaniXic — 1 0) Vi, d, c,t,

t t+1 ;
e = Max(XY;, + XY, —1,0) Vicc,gg,t

E icg idg'

1cc

By these considerations, also six auxiliary constraints should be added to the proposed model as follows:

Migrog = XYig + XYy — 1 Vii,c,c g8t (31)
Migiog =0 Vi i, c,c.gg.t, (32)
Nige > i;de, xc+;Ptd+1r . —1 Vjd.ct, (33)
Ny =0 Vjd.ct, (34)
Eivge = XYig +XYiiy =1 Vic,c,g.gt, (35)
Eiwg =0 Vic,c.g.g.t. (36)

Thus, the final version of the linear 0-1 programming model can be presented as follows:

. T J I I C C G G D{ )
min OB => %" ZZZZZZ {Bj] diSgg PiyiP5 4, 1) Micgr g 1-7)

t=1 j=1 d=1 i=1i=1c=1c=1g=1g'=1
J T 91 ¢ pt

+2 Z[B’} Nige (1-8)
j=1t=1 d=1 c=1 [
T-1 1 C 6 &,

Y Y H s a-9)
t=1 i=1 c=1c'=1g=1g'=1
LIS S

YD DY Qi (1-10)
t=1 c=1 i=1 k=1
T K

+ 3> (M Hi+ (1= )Fy) (1-5)
=1 k=1
T JOF | g

+ZZ ZZP[ DI Wial S (1-6)

Subjected to:
Unaltered set constraints (2)-(11), (13),(15), and (16), new auxiliary constraints (18)-(36) and also:Set constraint (12) is
replaced by:

C
M <> XS kit (37)
c=1

Set constraint (14) is replaced by:

Zi' =2, -RZy; vt=1,....T—1, Vk,i. (38)
Set constraint (17) is replaced by:

r,X,S,h,Y,Z, XY XS,RZ,Q,M,N,E € {0,1} (39)
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Table 2

The number of binary variables in the linear model.
Variable Count Variable Count Variable Cont
rhi KxIxT Yi, CxGxT Mf[gi,c,g, PxCxGxT
sf« KxCxT Xchg IxCxGxT N}?df ijP;XCXT
hi, KxT RZ; KxIxT Efpeg IxC*x G xT
Z KxIxT XSk IxKxCxT
Xl?c IxCxT fkc IxKxCxT

Sum =3(K xIxT)+ (KxCxT)+(KxT)+(IxCxT)+(CxGxT)+(IxCxGxT)
F2(IxKxCxT)+ (P x Cx G xT)+ (] x OP x CxT)+ (I x C* x G* x T)

Table 3

The number of constraints in the linear model.
Constraint Count Constraint Count Constraint Count
(2) IxT (16) GxT (29) IxCxKxT
(3) CxT (18) IxCxGxT (30) IxCxKxT
(4) CxT (19) IxCxGxT (31) PxCxGxT
(5) T (20) IxCxGxT (32) PxC?xGxT
(6) KxIxT (21) IxKxT (33) ]xopfxcx'['
(7) KxCxT (22) IxKxT (34) ]xOP}xCxT
(8) IxT (23) IxKxT (35) IxCxGxT
9) IxT (24) IxCxKxT (36) IxCPxG*xT
(10) KxT (25) IxCxKxT (37) KxIxT
(11) KxT (26) IxCxKxT (38) KxIx(T-1)
(13) KxT (27) IxCxKxT
(15) CxT (28) IxCxKxT

Sum=3(IxT)+3(CxT)+T+5KxIxT)+(KxCxT)+3(KxT)+(GxT)+3(IxCxGxT)+7(IxCxKxT)
F2(P x C x G xT)+2(J x OP} x C x T) +2(I x C* x G* x T) + (K x I x (T — 1)) + number of constraints relate to constraint (39)

Total number of variables and constraints in the proposed linear 0-1 programming model are reported in Tables 2 and 3,
respectively. In Table 3, the constraints related to constraint (39) are not counted.

2.5. LP-metric approach

Generally, LP-metric method provides a broader principle of compromise for solving multiple criteria decision making
problems. It transfers m-objectives (criteria), which are conflicting and non commensurable into one objective through nor-
malizing the objectives and Pareto optimal solutions can be obtained using the single aggregated objective function. Con-
sider the vector of objective functions as F(x) = (fi(x),fo(x),...,fa(x)) and the ideal vector of these functions as
Fx(X) = (ff (x),f;(X),....,fr(x)) and also the anti-ideal vector of objective functions as F (x) = (f; (x),f5 (x),....f, (x)), where
f; (x) and f(x) are positive and negative ideal solutions for ith objective function, respectively. LP-metric defines the distance
between two points F(x) and F * (x) according to Eq. (40). Actually in order to commensurate the units of objective functions
this metric can be used:

(e iy
D<;A,<fi*_fi>>, p=1.2,..., 40)

where /; is the importance weight of the objective function i. The overall goal is to minimize distance function (D) according
to problem constraints and find the Pareto optimal solutions.

2.6. Necessity of simultaneous consideration of different decisions in a CMS

The objective function of the proposed mathematical model consists of two basic costs. The first one is related to the ma-
chine and part related costs including inter-cell part trips (term (1-7)), intra-cell part trips (term (1-8)) and machine relo-
cation cost (term (1-9)). The second one is related to operator related issues and includes training cost (term (1-10)),
hiring and firing cost (term (1-5)) and salary cost (term (1-6)). In order to analyze the model more precisely, two basic costs
are named as f; and f5, respectively. Based on this definition let consider three separate models as follows:
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Model 1: Model 2:
Minimize OB1 = Summation of terms (1-7)-(1-9). Minimize OB2 = Summation of terms (1-10), (1-5), (1-
6).
Subjected to: constraints (2)-(4), (15), (16), (18)-(20), (31)- Subjected to: constraints (5)-(11), (13), (21)-(30),
(36), (39). (37)-(39).
Model 3:

Minimize OB = Summation of OB1 and OB2 using LP-metric distance.
Subjected to: (2)-(11), (13), (15), (16), (18)-(39).

By this decomposition models 1 and 2 can be treated as separate optimization models which try to reduce the cell for-
mation, inter cell layout and operator related costs, respectively. But by implementing model 3 which is formulated in this
paper, three main decisions of cellular manufacturing system including CF, GL and operator assignment can be optimized
simultaneously.

In order to verify performance of the proposed model, let define the following notations:

fr The optimal objective value of model 1.
5 The optimal objective value of model 2.
3 The optimal objective value of model 3.
fis  The objective value of model 1 which is obtained by replacement of optimal variables of model 3 into model 1.

Aryanezhad et al. [16] suggested a criterion as Eq. (41) to calculate the gap of differences between the optimal objective
value of model 1 and its objective value by considering optimal solutions of model 3.

I:%xloo. (41)

S

13

Also they have shown that f; < f; + f;. Hence two different conditions can be occurred. If f; = f; + f; solving the models 1
and 2, consecutively, can be a good strategy instead of solving of model 3 with more complexity. However it has been shown
that in most of cases f; < f; + f5. In this situation solving the model 3 in order to find an optimal solution which satisfies both
models 1 and 2 can be selected as a decision strategy. In this study the mentioned criterion in Eq. (41) is used to show the
ratio of total objective improvement by incorporating both decisions simultaneously.

Despite of considering two main separate objectives in model 3, it is worth to pay attention that their scales are different
and cannot be integrated originally, so the LP-metric technique which normalizes the objective functions is proposed. Then

the model 3 can be reformulated as model 4 (we consider P = 1).Model 4:Minimize LP = /, (f}ff—lf(f)) + (%:{?@) .Subjected to:
1 2 72
(2)-(11), (13), (15), (16), (18)-(39).

3. Numerical illustration

In order to verify and validate the proposed model, some numerical examples are generated by hypothetical parameters
given in Table 4 and are solved by branch-and-bound (B&B) approach using Lingo 8.0 software which have run on a PC
including Core i5 and 1 GB RAM. According to the model 4 and considering of (11, 2) = (0.5,0.5), number of inter-intra cell
part trips, number of machine relocations and also operator related costs are reported in Table 5. However, the first and last
instances which are small size and large size examples, respectively can be analyzed more precisely.

3.1. Instance 1

This example includes two cells, four machines, five available operators, two production periods and four parts should be
processed by machines considering their operation sequence in each period. Table 6 reports the machine-part related infor-

Table 4

Different instances with hypothetical parameters.
Example Parts Machines Cells Periods Operators Salary(Integer  Hiring and Operation time Training
number Uniform) firing(Integer (s)(Uniform) cost(Integer

Uniform) Uniform)

Instance 1 4 4 2 2 5 (1,9) (10,100) (0.1,0.7) (1,10)
Instance 2 5 4 2 1 10 (1,9) (10,100) (0.1,0.7) (1,10)
Instance 3 8 6 3 1 10 (1,9) (10,100) (0.1,0.7) (1,10)
Instance 4 8 7 3 1 10 (1,9) (10,100) (0.1,0.7) (1,10)
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Table 5
Objective values obtained by solving model 4.
Example number Number of inter-intra Operator related costs
cell Part trips
Instance 1 294 768
Instance 2 144 769
Instance 3 447 802
Instance 4 561 981

Table 6
The input information of part-machine matrix of instance 1.
Parts Period 1 Period 2
Process Processing time of each Demand Batch Process Processing time of each Demand Batch
sequence operation (W) (Djl) size sequence operation (W) (DJ?) size
1 1-4-3 0.2, 0.1, 0.05 100 10 4-2 0.2, 0.07 200 10
2 1-3 0.2, 0.05 60 10 4-2-3-1 0.2, 0.1, 0.08, 0.05 160 10
3 4-2-1 0.15, 0.1, 0.05 80 10 4-2-3 0.15, 0.1, 0.05 180 10
4 2-1-3 0.1, 0.08, 0.05 90 10 3-1-2-4 0.15, 0.1, 0.08, 0.05 20 10
Table 7
Capabilities of operators in working with different machines (1 — Z) - instance 1.
Operators Machine
1 2 3 4
1 0 0 1 1
2 0 1 0 0
3 0 0 1 0
4 0 1 0 0
5 1 0 1 0
Table 8

Training cost of operators to learn working with different machines (a) - instance
1.

Operators Machine

2 3 4
1 7 6 0 0
2 5 0 4 6
3 3 3 0 5
4 5 0 3 4
5 0 5 0 5

mation of the first instance. The operator-machine related input data including capabilities of operators in operating with
different machines, training, salary, hiring and firing costs for instance 1 are reported in Tables 7-10. For example, as shown
in Table 7, the operator 5 is able to work with machines 1 and 3. The minimum and maximum operators required by each
machine are 2 (L; = 2, U; = 2). Table 11 shows the distance between candidate cell locations. Moreover, it is assumed that the
minimum and maximum machine capacities of each cell are 1 and 2, respectively (L. = 1, U, = 2).

Pay-off matrix which shows the positive and negative ideal solutions for each objective function of model 4, are reported
in Table 12.

According to the Tables 2 and 3, the model 4 for the instance 1 includes 1877 binary variables and 3794 linear constraints
which could find the optimal solution in 6 s. The solution of this example including operator assignment solution and also
cell formation and inter-cell layout solutions are reported in Tables 13 and 14.

Hence the objective functions and problem assumptions are different from previous investigations; it cannot be com-
pared with results of previous studies. However; the obtained solution can be interpreted as follows: As shown in Table 14,
operator 3 is assigned to machine 2 and since this operator cannot work with this machine, he should be trained and the
training cost for this operator-machine pair is 3. It is realized from Table 7 that operator 4 can be assigned to this machine
without any training cost. But the salary value decreases 7 units for an hour (Table 9). Since operator 4 who is trained only for
machine 2, is not employed in the first production period.
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Table 9

Salary of operators in working with different machines (Sa) - instance 1.
Operators Machine

1 2 3 4

1 12 11 9 10
2 9 12 10 11
3 10 9 13 14
4 11 16 9 12
5 12 11 11 11

Table 10

Hiring (H) and firing (F) costs, maximum and minimum number of machines to be
assigned for each operator - instance 1.

Operators Hiring cost Firing cost Uk Ly
1 20 15 2 1
2 17 15 2 1
3 20 10 2 1
4 18 15 2 1
5 15 12 2 1
Table 11
Distance between cell locations (Dis) - instance 1.
From To
1 2 3
1 0 5 7
2 5 0 2
3 7 2 0
Table 12
Pay off matrix of two objectives - instance 1.
Positive Ideal solution value Negative Ideal Solution value
fi f fi fa
fi fi =144 20872 fi =20872 20872
f 844.43 f; =768.04 870.85 fy =932.27
Table 13
Inter-cell layout and machine grouping - instance 1.
Cells Period 1 Period 2
Cell location Machines Cell location Machines
1 3 1,2 2 2,4
2 2 4,3 3 1,3
Table 14
Operator assignment based on cell formation solution - instance 1.
Operators Machines (period 1) Machines (period 2)
1 2 3 4 1 2 3 4
1 * * *
2 * * * *
3 * * *
4 * *
5 * * * *
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Fig. 2. The effect of different /; values on the gap criterion (I) - instance 1.

Also the schematic view of production plan which is obtained for this example is depicted in Fig. 1. It is clear that erratic
demands and different processing sequence in periods 1 and 2, results in different inter-cell layout, cell formation and oper-
ator assignment solutions in each period. The calculated I criterion for this example is 0.51 which means that when the oper-
ator assignment problem is taken into account, the total cost is decreased 51%.

Also the sensitivity analysis of incorporating the operator related issues into the cellular manufacturing system is ob-
tained using different values of /. Fig. 2 demonstrates the results. Different values of /; and its effect on the I criterion value
has been depicted in this figure. According to this figure for larger values of 1; (4; > 0.9) the cell formation of both models 1
and 4 behave the same. But by increasing of /, values the operator assignment solution will be significant and by 4; < 0.7 the
maximum differences between models 1 and 4 is obtained in the first instance.

3.2. Instance 4

This example includes seven machines, three cells, ten available operators, two production periods and eight parts which
should be processed by different machines considering the manufacturing process sequence. Machine-part related informa-
tion for instance 4 is illustrated in Tables 15 and 16. Furthermore; operator related issues including operators’ capabilities in
doing different jobs, training, salary, hiring and firing costs are reported in Tables 17-20. Table 21 shows the distance be-
tween candidate cell locations. Moreover, it is assumed that the minimum and maximum machine capacities of each cell
are 1 and 3, respectively (L. =1, U. = 3).
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Table 15
The input information of part-machine matrix - instance 4 (period 1).
Parts Process sequence Processing time of each operation (W) Demand (D}) Batch size
1 1-3-4-2-7-6 0.6, 0.3, 0.5, 0.7, 0.5, 0.4 90 10
2 5-6 0.1,03 100 10
3 6-5-2-7-4-3 0.6, 0.1, 0.2, 0.2, 0.6, 0.6 20 10
4 2-4-5 0.7,0.3, 0.6 100 10
5 1-2-7-5-3 0.5, 0.7, 0.5, 0.5, 0.5 70 10
6 1-2-5 0.1,04, 0.3 10 10
7 7-6-1-4-7-5-3-2 0.1,04, 0.2, 0.5,0.1 0.7, 0.6, 0.6 30 10
8 5-2-7-6-4-3-7 0.1, 0.1, 04, 0.5, 0.1, 0.7,0.4 60 10
Table 16
The input information of part-machine matrix - instance 4 (period 2).
Parts Process sequence Processing time of each operation (W) Demand (D}) Batch size
1 2-5 0.7, 0.03 20 10
2 7-6 0.5, 0.4 50 10
3 6-7 0.1,0.2 100 10
4 5-7-3-7 0.1,0.5,0.3,05 80 10
5 6-1-7 0.2,0.6, 0.5 100 10
6 5-3-7-1 0.6, 0.2, 0.6, 0.2 70 10
7 6-3-5-2-7-1 0.3, 0.6, 0.7, 0.6, 0.4, 0.4 10 10
8 5-1-2-7-3-7 0.1,0.5,0.2, 0.1, 0.4, 0.1 90 10
Table 17
Capabilities of operators in working with different machines - instance 4 (1 — 2).
Operators Machine
1 2 3 4 5 6 7
1 1 0 0 0 0 1 0
2 0 1 0 1 1 0 0
3 1 1 0 0 0 0 0
4 0 0 0 0 0 0 0
5 1 0 0 0 0 0 0
6 0 1 0 0 0 0 1
7 1 1 0 0 0 0 0
8 0 0 0 0 0 1 0
9 1 1 0 0 0 0 0
10 0 1 0 0 0 0 0
Table 18
Training cost of operators to learn working with different machines - instance 4 (a).
Operators Machine
1 2 3 4 5 6 7
1 0 7 9 5 6 0 6
2 8 0 9 0 0 4 5
3 0 0 9 4 6 4 6
4 7 6 8 3 6 3 4
5 0 7 8 5 6 4 6
6 6 0 9 4 6 3 0
7 0 0 7 5 6 4 5
8 6 5 9 5 6 0 4
9 0 0 9 4 6 4 6
10 6 0 7 3 6 3 4

Table 22 illustrates the optimal layout of cells in periods 1 and 2 and also machine grouping within cells. Since a large
value of machine relocation cost has been considered for this instance, it is clear that machines are not moved between cells.
Tables 23 and 24 show the operator assignment to machines in both periods. In order to obtain this optimal solution,
operators 1, 2, 4, 5, 6, 8 should be trained to work with machines 4, (3,7), 6, 6, (1,4) and (3,7), respectively. Considering these
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Table 19
Salary of operators in working with different machines - instance 4 (Sa).
Operators Machine
1 2 3 4 5 6 7
1 9 5 8 1 7 10 7
2 10 9 4 5 2 6 5
3 2 2 7 4 2 2 4
4 10 5 2 8 5 2 9
5 7 10 8 8 10 3 6
6 1 8 1 2 4 9 6
7 3 10 3 5 6 3 10
8 6 7 1 5 3 9 3
9 10 1 1 7 8 3 8
10 10 9 9 8 3 10 8
Table 20

Hiring (H) and firing (F) costs, maximum and minimum number of machines to be assigned
for each operator - instance 4.

Operators Hiring cost Firing cost Uy Ly
1 100 80 3 1
2 100 80 3 1
3 80 60 3 1
4 40 20 3 1
5 30 10 3 1
6 40 20 3 1
7 50 20 3 1
8 50 20 3 1
9 50 20 3 1

10 50 25 3 1
Table 21
Distance between cell locations (Dis) - instance 4.

From To

1 2 3

1 0 5 7

2 5 0 2

3 7 2 0
Table 22
Inter-cell layout and machine grouping obtained - instance 4.

Cells Period 1 Period 2
Cell location Machines Cell location Machines

1 3 1,2, 4 1 6

2 2 3,57 3 1,2,4

3 1 6 2 3,57

tables it can be realized that operators 7 and 10 in period1 and operators 1, 7 and 10 in period 2 are not employed in order to
the optimal system efficiency be obtained.

As this example is a large-sized problem, the optimal solution has been obtained after 1416 min. however, the compu-
tational time of the first example is 6 s.

As pointed by Dimopoulos and Zalzala [17] the CMS design problem is NP-hard which means increasing in problem size
will increase the computational time by the non-polynomial function. So, Linearization of mathematical models is an impor-
tant issue especially in large sized problems. In order to evaluate the performance of linear mathematical model versus the
non-linear model in both optimality and computational time, the instances given in Table 4 are solved by both linear and
nonlinear models. The schematic comparison of computational time of examples solved by both linear and nonlinear models
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Table 23
Operator assignment in period 1 based on cell formation solution - instance 4.
Operators Machines
1 2 3 4 5 6 7
1 *
2 * * *
3 * *
4 *
5 *
6 * *
7
8 * * *
9 *
10
Table 24
Operator assignment in period 2 based on cell formation solution - instance 4.
Operators Machines
1 2 3 4 5 6 7
1
2 * * *
3 * * *
4 *
5 *
6 * *
7
8 * * *
9 *
10
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Fig. 3. The comparison of linear and non-linear mathematical models in computational time aspect instance 1-4.

is demonstrated in Fig. 3. According to this figure the computational time of linear model has lower slope by increasing the
problem size in comparison to the nonlinear form.

3.3. An application on real data

A CMS can be designed in manufacturing companies with small and medium size machines. These kinds of machines can
be relocated considering many real world manufacturing costs. Iranian automobile industry is composed of domestic cars
produced by two major companies, Saipa and Iran-Khodro in addition to a number of limited imported cars. In order to illus-
trate the applicability of proposed model, it was applied on data of design & manufacturing (die shop) department of SAIPA
Co. This factory works 8 h/day, 30 days/month, and 12 months a year, which results in 2880 h/year as available capacity. In
this department different kinds of parts such as pin, pierce punch, bottom die, guide and pallet guide pin should be manu-
factured based on processing sequence on different machines such as drilling machine, CNC milling machine, conventional
milling machine, electro-erosion machine, etc. Considering a production horizon including two production periods (two
months), the machine-part related information is reported in Table 25. Since the exact information of operator related issues
were not in access, the estimated information is reported in Tables 26 and 27. Moreover; the salary of operators, firing and
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Table 25
The process sequence (process time) of parts, demand, number of operators - case study.
M1 M2 (conventional M3 M4 M5 M6 (CNC M7 (tool Demand Demand
(cutting)  lathe) (milling)  (grinding) (heating) milling) grinding) period 1 period 2
1. Plate 1(1) 2(7) 3(2) 400 300
guide pin
2. Pierce 1(0.5) 3(7) 7(7) 5(20) 4(3) 2(3) 6(3) 200 400
punch
3. Block D01 1-3(0.5-0.5) 2-4(5-7) 5(3) 200 100
4. Stop D02 1-3(0.5-1) 2-4(3-7) 400 200
5. Guide 1(1) 2-6(40-10) 4(28) 3(5) 5(3) 3000 2000
6. Stop D01 1-3(0.5-1) 2-4(3-7) 400 600
7. Shaft DO3  1(0.5) 2(12) 3(3) 4(2) 400 700
8. Bottom 1-3(0.5-3) 4(2) 2(20) 5(3) 100 200
Die
9. Pierce 1(0.5) 2-7(3-4) 5(15) 4(3) 3(15) 6(2) 200 0
punch
10. Pin D08 1(0.5) 2(2) 4(1) 3(.5) 200 400
11. Pin PO1 1(0.5) 2(5) 3(8) 4(1) 400 600
12. Master 1(1) 2(7) 3-5(4-5) 4(2) 1200 600
gage
Table 26
Capabilities of operators in working with different machines (1 — Z) - case study.
Operators Machine
1 2 3 4 5 6 7
1 1 1
2 1 1
3 1
4 1
5 1 1
6 1 1 1 1 1
7 1 1 1
8 1 1 1 1
9 1 1 1 1
10 1
11 1 1
12 1
13 1 1 1 1
14 1 1 1
Table 27
Training cost of operators to learn working with different machines (a) - case study.
Operators Machine
1 2 3 4 5 6 7
1 500,00 0 0 80,000 12,000 - -
2 80,000 120,000 110,000 0 - - 0
3 0 20,000 30,000 15,000 10,000 15,000 20,000
4 30,000 20,000 5000 10,000 0 60,000 20,000
5 50,000 50,000 80,000 90,000 - 0 0
6 0 0 0 0 0 - -
7 0 0 0 50,000 60,000 35,000 20,000
8 60,000 50,000 75,000 0 0 0 0
9 0 0 90,000 0 0 40,000 15,000
10 - - - - - 0 20,000
11 - - 0 50,000 - 120,000 0
12 0 - - - - - -
13 30,000 0 0 0 0 110,000 20,000
14 - - - 40,000 - - -
Number of operators required 2 2 1 2 3 2 1

by each machine
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Fig. 4. The schematic view of cell formation, inter-cell layout and operator assignment case study.

hiring costs are supposed to be 900,000, 1,500,000, and 60,000, respectively. Also in this department each operator should be
assigned to 2 machines in a production period. Also the machine relocation cost is assumed to be 50,000.

Fig. 4 illustrates the schematic view of optimal solution obtained for this problem. According to this figure it can be real-
ized that operators 10, 11 and 12 are not hired in both periods. This is because of their incapability in working with different
machines. Moreover; since the machine relocation cost has a large value, only machines 1 and 5 are moved between cells.
This solution can be applied in mentioned department as an optimal manufacturing system. The optimal solution is found
after 1653 min.

4. Conclusion

In this paper simultaneous consideration of the cell formation problem with inter-cell layout and operator assignment
problems in a dynamic cellular manufacturing environment is investigated. A new mathematical model is proposed based
on the consideration of these three sub problems, concurrently. To validate and verify the proposed mathematical model,
some numerical examples are generated with hypothetical parameters. The results show that the proposed integrated model
is more efficient than separate previous models. Also the sensitivity analysis of the coefficients confirms that the proposed
model can find optimum points of separate objective functions. Also the applicability of proposed model is verifies by apply-
ing it on Saipa company as a car producer. However, since the proposed model is NP-hard such a way that solving a large size
problem in a reasonable computational time is intractable, a Meta-heuristic solution approach can be beneficial in improving
its time requirements. Also consideration other production elements such as machine reliability and duplication and also
incorporating the intra-cell layout problem in provided framework can be interesting as future studies.
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