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Abstract While many cluster and grid computing
frameworks are available, the task of building secure
distributed systems or implementing distributed algo-
rithms continue to be a challenging task due to the
inherent distributed nature of such systems with multi-
ple failure modes and security issues. In this paper, we
present the design and development of remote method
delegation (RMD), which is a secure lightweight grid
computing platform with load balancing and code
migration. RMD is focused on improving the usabil-
ity issues that plague related industry solutions. The
platform is implemented on the JVM (Java Virtual
Machine) and supports the Java and Kotlin program-
ming languages, however, the platform should theo-
retically work with other JVM languages. RMD was
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designed to simplify the implementation of distributed
algorithms by providing a Kotlin DSL (domain spe-
cific language) that allows the programmer to define
jobs within dedicated code blocks. Users from around
the world can donate their own computing resources
by hosting their own job server. RMD is secured by
placing all untrusted code within a sandbox environ-
ment that prevents potentially malicious actions from
taking place. To demonstrate the feasibility of the pro-
posed model, a proof of concept implementation has
been constructed with real examples demonstrating
the usefulness of the proposed solution.
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interface · Load balancing · Code migration ·
Cluster computing · Grid computing ·
Remote procedure calls · Remote method
delegation · High performance computing ·
Parallel computing · Domain specific language ·
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1 Introduction

It is often a daunting task to solve problems that
require high performance computing systems due to
the inherent distributed nature of cluster and grid
computers. Researchers commonly encounter paral-
lelizable problems that are too tough to be solved
by a single machine. It is often problematic that
many researchers are not experts on high performance
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computing which could pose a large impediment to
their research. It is our goal to create a platform that
reduces boilerplate and works out of the box with little
configuration and minimal developer training.

High Performance Computing: High Performance
Computing (HPC) typically refers to the combina-
tion of several computing machines to achieve a
greater performance output than any of the individual
machines that the system is composed of [20].

Grid Computing: Grid computing is the combination
of many loosely coupled, geographically dispersed
machines that are often used for a variety of jobs.
Grid computers are usually made up of heterogeneous
computers systems [13].

Remote Evaluation: Remote evaluation refers to the
act of migrating code from client to server for subse-
quent evaluation on the server [28]. The results of the
executed jobs are returned back to the client. Remote
evaluation is the core mechanism used to facilitate the
RMD platform.

Load Balancing: Load balancing is an important part
of many distributed systems and is used to improve
the distribution of computational workloads and pre-
vent any single resource in the system from becoming
overloaded [19].

Internal DSL: An internal DSL (domain specific lan-
guage) is a language tailored to a specific set of
use-cases and is built on top of another programming
language called the host language. This differs from
an external DSL which will require its own compiler
and runtime environment [16].

Java Virtual Machine: The Java Virtual Machine
(JVM) is the platform of choice for our proposed
solution. The JVM operates across many architectures
and operating systems, executing cross-platform JVM
bytecode, which enables developers to write platform
independent software [21]. The “Write once, run any-
where” model of the JVM is particularly advantageous
to RMD because it supports the requirement of execut-
ing code in a heterogeneous environment which could
have varying hardware and operating systems across

the grid. The use of bytecode also facilitates the use of
various programming languages, as long as they com-
pile to JVM bytecode. Kotlin, Scala, and Groovy are
examples of alternative JVM languages.

RMD provides several contributions to high perfor-
mance computing (HPC) and grid computing. RMD
tackles many of the usability concerns of researchers
by providing a higher level of abstraction to the pro-
grammer and allows for existing applications to be
easily ported with little effort. A high level of abstrac-
tion is achieved with a combination of a Kotlin DSL
and automated code migration followed by remote
procedure calls. The design philosophy of increased
abstraction enables the reduction of boilerplate code,
allowing researchers and developers to spend more
time focusing on the issue at hand. RMD does not
require the use of the DSL, allowing the developer
to use any JVM language, such as Java. RMD is a
platform which also provides a DSL as a support
mechanism to those who want it. In the context of
RMD, a ‘delegate’ refers to the remote evaluation
of locally defined methods and functions which can
be executed both synchronously and asynchronously.
The programmer can easily delegate a call to the grid
by using a lambda expression or method reference or
make use of our Kotlin DSL which allows developers
to define jobs in dedicated code blocks. We provide a
load balancing mechanism to ensure that none of the
machines in the system will be over or under utilized.
People from around the world can donate their com-
puting resources to help increase the computational
power of the grid. An implementation for RMD is
provided on Github [30].

The remainder of this paper is structured in the fol-
lowing way: Section 2 will provide a brief overview
of related works. In Section 3, we discuss the fea-
tures, architecture, and implementation details of the
proposed solution. Section 4 contains a performance
evaluation of our system with experimental results. In
Section 5, you will find advice on practical use and
best practices for the proposed solution.

The contributions of this work are as follows:

– RMD is interoperable with other JVM languages
– provides a higher level of abstraction to the

programmer, reducing boilerplate, and developer
training
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– we provide a publicly available implementation of
the proposed platform on Github

2 Background and Related Works

There are many HCP and distributed computing
frameworks that have been developed over the past
few decades. To provide an understanding of the moti-
vations for this project, this section describes related
infrastructure.

2.1 Message Passing Interface (MPI)

MPI is a specification for a communication protocol
that is widely used for high performance computing
applications. It maintains a focus on high perfor-
mance and scalability [14]. MPI programs are usually
designed to follow the Single Program Multiple Data
(SPMD) programming paradigm [27]. Each node in
the cluster will run the same program and communi-
cate with other nodes using the MPI API. In an MPI
based application, each process is assigned a ‘rank’
which is used for the identification of each process.
A Process rank ranges from 0 (master node) upto the
number of processes (exclusive) in the cluster. Mes-
sage passing is a low level interface with little abstrac-
tion, as such, the programmer is explicitly responsi-
ble for all inter-process communications whilst RMD
handles communications between nodes from behind
the scenes with a high level of abstraction. Utiliza-
tion of method references, lambda expressions, or
the Kotlin DSL help RMD achieve a high degree of
abstraction and to minimize boilerplate code. Explicit
control over message passing does provide some sig-
nificant advantages, such as the ability to create a ring
topology by targeting specific processes by their rank.
For example, in a three node cluster, the master node
(rank 0) could pass a message to the process with a
rank of 1. The rank 1 process could forward the mes-
sage to the process of rank 2, and finally, to complete
the ring, the rank 2 process could forward the message
back to the master node. In the name of simplicity,
RMD does not allow for manual communication man-
agement. It is possible to provide support for ring
topologies in the future.

There are several implementations of the MPI spec-
ification that are currently available including MPICH
(the reference implementation), OpenMPI, and a few
others [14, 15].

2.2 Remote Procedure Calls

Remote Procedure Calls (RPC) is a programming
paradigm that provides the programmer with a higher
level of abstraction than the MPI and are usually
highly transparent [29]. An RPC system provides the
developer with a handle to a function that is typically
located on another machine for the purposes of invoca-
tion. The RPC framework is responsible for managing
communications between machines, including send-
ing invocation requests, transmitting and marshalling
arguments, unmarshalling and returning results. While
RPC does increase abstraction, significant overhead is
added to the system.

RPC systems can also be object-oriented, such
systems are often called Remote Method Invocation
(RMI). An RMI client communicates with a server
through the use of a stub. The programmer invokes
method calls through the stub object which is responsi-
ble for marshalling arguments, sending the invocation
request as well as unmarshalling and returning results.

Java RMI is one of many implementations of this
technique and operates using a proxy-based architec-
ture [25]. The use of an adapted version of Java RMI
in grid computing environments has been proposed
in [1], however other Java-based grid programming
environments have been shown to outperform Java
RMI [26]. Java RMI also lacks many useful features
that could make up for its large overhead. It does not
support RPC’s for static methods, nor does it support
code migration or load balancing. A common interface
is required to define methods or services that can be
invoked remotely. Classes declared on the server side
implement these interfaces and bind instances of their
type to the RMI registry. The RMI registry is respon-
sible for declaring and invoking exported services and
communicating with clients. The client will perform a
lookup request on the remote server to find the appro-
priate object and acquire the stub that implements the
common interface by means of a proxy to the remote
object instance.
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2.3 BOINC

BOINC (Berkeley Open Infrastructure for Net-
work Computing) is a popular platform for public-
resource computing [2]. Public-resource computing
(also known as volunteer computing), is a type of dis-
tributed computing whereby members of the public
can donate their computational resources or data stor-
age, typically for the purposes of scientific supercom-
puting. BOINC is low-level and lacks the abstraction
provided by RMD and requires extensive project con-
figuration. There are many past and present research
projects that have utilized the BOINC project, includ-
ing FightAIDS@Home [11] which hopes to find drugs
which are effective in disabling the HIV-1 Protease.
Some popular projects include SETI@home [3] a
project aimed at searching for extraterrestrial intelli-
gence which utilizes over 5,000,000 processing units.
Other projects include WEATHER@home [22] which
aims to perform a set of regional climate modeling
and to help better understand how climate change will
affect weather patterns.

2.4 Related Works

In recent works, domain specific languages have
been proposed for high-performance computing.
ANTAREX [24] is a recently developed DSL for HPC,
however it follows the Aspect Oriented Programming
(AOP) paradigm whilst RMD is functional. Chapel [6]
is a portable, parallel programming language that can
also run in distributed systems such as in a cluster.
RMD does have a significant advantage over these
DSL’s because our infrastructure does not require the
use of our DSL. This is possible because the RMD
framework is written in Java and provides the DSL
as a support mechanism. The DSL works by insert-
ing calls to the RMD framework that would otherwise
be written by the developer. Due to the interoperabil-
ity of JVM languages, developers can work in the
languages that they already know and utilize code
that was written in another language for their RMD
projects. Additionally, utilizing method references and
lambda expressions to define jobs in Java provides
significant syntactic sugar over many library based
approaches to HPC. Other DSLs such as Liszt [10]
and DWARF [18] have been proposed to solve narrow
HPC problems such as clustering data. Vivaldi [7] is

a transcompiled DSL that targets python with a focus
on volume processing and visualization.

Other popular HCP frameworks such as Apache
Spark [31], Storm [17], and Hadoop [4] are geared
towards large-scale data processing. The Hadoop
project implements the MapReduce [9] programming
model and provides a distributed file system to man-
age data.

OpenMP [8] is a popular shared-memory HPC
framework that uses compiler directives to achieve
parallelization. This simplistic approach allows for
easy modification to parallelize existing code.
OpenMP implementations are available for a variety
of programming languages.

3 RMD Framework

3.1 Features

RMD shines in the field grid computing because of its
usability features and support for multiple JVM lan-
guages. In fact, RMD maintains static typing, supports
both synchronous and asynchronous jobs, is config-
urable, and provides a simple Kotlin DSL to aid the
cleanliness of development.

3.1.1 Static Type Safety

The programmer is able to maintain static type safety
by using both method references and lambda expres-
sions to denote the job that you wish to delegate. This
technique allows the compiler to infer the type infor-
mation through a functional interface. A functional
interface is an interface with only one abstract method
and its implementation can be represented by lambda
expression or method reference.

3.1.2 Synchronous and Asynchronous Jobs

Both synchronous and asynchronous jobs are sup-
ported by the client. Asynchronous jobs execute in a
non-blocking manner, allowing the machine to per-
form useful work while the job is executing remotely.
The use of synchronous jobs is also important and
is highly applicable to divide-and-conquer algorithms.
Such a problem could be divided into several sub-
problems, which execute asynchronously on the job
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servers. Next, a synchronous job could be used to
combine the sub-problems into a single result.

3.1.3 Distributed Transparency

RMD is designed to be highly transparent whereby
one cannot tell the difference between jobs that are
executed locally or by one of many external job
servers. Behind the scenes, RMD handles the code
migration and distribution of the application work-
load. The job server will also catch exceptions thrown
by a job and return a sanitized stack trace back to the
client where it can be re-thrown and analyzed by a
developer. This creates the appearance that the task
has been executed locally.

3.1.4 Configurability

The implementation provides a few configuration
options to developers. In the configuration file, users
will define a list of hosts, which could be either Job
Servers or Load Balancers. Due to the distributed
transparency, both types of entities are acceptable
because the client, job server, and load balancer do not
distinguish between each other. Sometimes failures
may occur in the grid, which is why users can spec-
ify the use of one of three protocols to handle failures,
such as a lack of external computing resources. Users
can choose between a retry protocol, an exception-
based model, and finally, local job execution. In an
exception-based model, the application will simply
throw an exception if there is no available Job Server
to process the request. Alternatively, the job request
can be sent again, or the job can be executed locally.

3.1.5 Kotlin DSL

In an attempt to provide platform support to other
JVM languages, we implemented a Kotlin DSL
(domain specific language). The domain specific lan-
guage in this context is an internal DSL, which means
that it is built on top of the Kotlin, and the exist-
ing JVM infrastructure to provide domain specific
enhancements i.e., grid computing. This approach
allows the user to define their jobs within blocks that
are specific to their computing application. For the
Kotlin DSL, we provide three types of blocks: ‘dele-
gate,’ ‘async,’ and ‘callback’. The delegate block is a

Fig. 1 2-Tier

block of code that represents a job that is to be exe-
cuted synchronously on the remote job server. The last
statement in the block is the result to be returned to
the programmer. The async and callback blocks are
designed to go together because a callback is required
to retrieve the result from an asynchronous job. The
result of the last statement in the async block is the
result sent to the callback. The Kotlin DSL serves to
enhance the features of RMD by providing a cleaner
way to define jobs with a higher level of abstraction
and no need to implement any special interface.

3.2 Distributed RMD Architecture

The distributed system is designed with a multi-tier
architecture and should be used with either a 2-tier
(Fig. 1) or 3-tier setup (Fig. 2).

In the 3-tier architecture, the client communicates
with the load balancer, which acts as a middleman
between the client and job servers. Any scheduling
algorithm could be used with the load balancer via
dependency injection. It should be noted that in the
2-tier setup, the client can still make use of several

Fig. 2 3-Tier
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job servers because it has its own built-in load bal-
ancer. This approach requires the client to have prior
knowledge about the existence of each job server.
This approach will have the added benefit of reducing
the amount of communication required to send a job
request to the grid because requests will not need to
pass through an external load balancer first.

3.3 Implementation

We have provided our own implementation of this
project on the Java Virtual Machine with a modu-
lar design allowing for a separation of concerns. In
total, there are 5 modules including the load bal-
ancer, job server, the main client, the Kotlin client
(Kotlin DSL support), and the communication mod-
ule. Each module is responsible for one specific job,
and they collectively work together. Since the project
is implemented on JVM, it can theoretically support
any language that executes on top of the JVM, and not
just Java. Our implementation officially supports both
the Java and Kotlin programming languages.

3.3.1 Communications

Network communications is an important part of the
distributed system. The communication module has
the job of guaranteeing that messages are passed from
client to server and are handled by the correct han-
dler. Our implementation communicates with the TCP
protocol although it is possible to implement the com-
munication module using the UDP protocol. The UDP
protocol would add extra challenges to the communi-
cations because UDP does not guarantee the order of
messages upon arrival.

The communication module implements a very
simple request-reply protocol. The protocol (described
in Table 1) requires that each message contains the
following information: message length, request Id,

Table 1 Communication protocol

Number of bytes Content

4 Message Length (N)

4 Request Id

N Serialized Message Content

(See Table 2)

and serialized message contents. The length of the
message indicates the number of bytes to be read,
whilst the request Id is used to pair a request with
its corresponding reply. The request Id is generated
by a counter that is incremented after each addi-
tional request is made. The contents of the message
are represented by an object that must inherit from
either the ‘Request,’ or ‘Response’ classes used to pro-
vide contextual information to determine whether a
message is a request, or a response, and to indicate
whether the request has succeeded. Table 2 describes
the structure of the messages that will be transmit-
ted back and forth. The content of each message is
serialized and deserialized using a framework called
Fast-Serialization, which has a greater performance
than the native JVM serialization algorithms [23]. This
is important because marshalling and unmarshalling
of objects can cause significant overhead.

3.3.2 Client

The client module is responsible for providing the
developer with the infrastructure required to deploy
their applications. The following features are imple-
mented by the client module:

1. Provides the high level RMD API
2. Finds declaring class and method signature (call-

site) at runtime from a method reference (to the
job)

3. Determines the set of job dependencies
4. Performs code migration
5. Sending job requests

This module is dependent on both the communica-
tion module, and the load balancing module. The load
balancing module is also used on the client side to
allow for use of multiple job servers without requir-
ing an external load balancer to act as the middleman.
This allows for the removal of an extra layer of com-
munication from the system but requires the client to
have prior knowledge of external job servers.

To allow the developer with a high degree of
abstraction, and to maintain static type safety, method
references and lambda expressions are used to specify
the job that will be executed remotely. When del-
egating a job, a method reference can be used to
refer to existing code, including external libraries.
Method references also support the use of static meth-
ods, which happens to be one of limitations of Java
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Table 2 Messages and
their contents Message name Contents Descriptions

Job Request String Class containing delegate

int Method Index

byte[] Serialized arguments

Job Response boolean Whether job was successful

Object Result produced by job

Throwable If exceptions occur

Migration Request Map Class names mapped to byte code

Migration Response boolean Whether migration was successful

RMI. Alternatively, the developer can use a lambda
expression for added syntactic sugar. Since method
references are a type of lambda expression, there is
no need for RMD to differentiate between the two
because they are both represented in the same way
after compilation. At runtime, RMD needs to decipher
the following information from the job: its method
name, the declaring class file, and its method signa-
ture. The callsite information can be determined at
runtime to avoid any sort of compiler bootstrapping.
This is possible because calls to the RMD API’s ‘del-
egate’ functions only accept our custom functional
interfaces which are serializable. Since the lambda
expressions can be serialized this information must
be present at runtime. This information is required to
understand which code needs to be migrated. In addi-
tion, a function to be delegated may make use of any
dependency, whether it be locally defined, part of a
library, or the Java standard library. In Fig. 4 we pro-
vide an example program to show the various ways in
which class files can be dependent upon each other. To
determine the set of dependencies required to execute,
we rely on the ASM bytecode manipulation and gen-
eration framework [5] which provides the capability to
analyze all aspects of a class file. Specifically, we are
looking at the following things in each class file:

1. Inheritance: parent class, interfaces
2. Annotations: of classes, fields, methods, inter-

faces, and other annotations
3. Fields: check the type of field
4. Methods: method signature including arguments

and return type
5. Methods: check the type of local variables
6. Methods: instructions referring to other class

files such as retrieving a field

It is important to note that jobs may have depen-
dencies which also have their own dependencies, so
RMD solves this problem by recursively analyzing
each class and ignoring classes that belong to the stan-
dard library (don’t require migration), and class that
have already been analyzed. At this point, information
pertaining to the job and it’s dependencies are cached,
and do not need to be looked up again. However, since
the client may be in contact with multiple job servers,
we use a set to keep track of which dependencies have
been migrated to each job server and only send the
required dependencies when they are needed to exe-
cute a job. The entire migration process is repeated
after each subsequent execution of an RMD appli-
cation. For this reason, versioning issues will not be
apparent as each job server will discard old class files.
Figure 3 describes the flow of the migration process
(Fig. 4).

3.3.3 Synchronous Java Example

In this example, the function ’factorial’ executed with
an input of 6 in a blocking manner. A method ref-
erence is used to tell the system what code is to be
executed.

a = delegate(this::factorial, 6)
println("6! = " + a);

3.3.4 Asynchronous Java Example

In this code snippet, the main calculation is done asyn-
chronously by the server and the client does not block
while waiting for the reply. The client is then free
to do other tasks while the server completes the job.
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Fig. 3 RMD job delegation process

Both the job and callback functions are defined via
lambda expression, with the function parameters in the
middle.

Fig. 4 Example RMD
program with dependencies

delegate((a, b) -> a * b,
5, 9,
n -> {
// callback
println("5 * 9 = " + n);

});

3.3.5 Kotlin Client

The Kotlin client module serves to provide extended
support to the Kotlin programming language. This
module defines an expressive Kotlin DSL (domain
specific language) which serves to make use of the
expressive grammar defined by the Kotlin program-
ming language. This module is dependent upon the
main Client module to handle any code migration and
job requests. The DSL is designed to be extremely
simple for users to understand.

3.3.6 Synchronous Kotlin Example

Since Kotlin has extremely expressive syntax, a func-
tion that accepts a lambda expression can be written
as a block with a body. For example, code in the del-
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egate block would be executed remotely in a blocking
manner.

val a = 100
val b = 200

val result = delegate {
// blocking remote execution
a * b

}

println("$a * $b = $result")

3.3.7 Asynchronous Kotlin Example

To execute an asynchronous job, the programmer can
define code within an ‘async’ block and optionally
provide a ‘callback’ block to acquire the result.

val a = 10
val b = 20

async {
a * b // executes remotely

} callback {
// executes locally
println("$a * $b = $it")

}

3.3.8 Job Server

The job server has several duties to perform as part
of the RMD platform. Firstly, the job server facili-
tates resource donation for users who choose to run
it on their own hardware. It must also handle incom-
ing migration requests and to perform the execution of
any job requests. Upon receiving a migration request,
the job server attempts to load all classes specified
in the request. This is easily accomplished by provid-
ing a custom class loader that searches the class map
(key=class name, value=class file) instead of the local
file system. In the unlikely event that a class fails to
load, either because it is corrupted or its dependencies
are missing, the job server will reply with a failure
message.

After the migration action has been completed,
clients can send a number of job requests in parallel
to one or more servers. Each job request contains the
following information: the method name, the method

signature, the name of its declaring class, and the func-
tion arguments. This information is required to find
the declaring class, and to invoke the method by using
reflection. In the event that the class or method is not
found, the server will send the failure response. The
server executes job requests on a thread-pool which
can also gracefully catch any exceptions. If a job
throws an exception during its execution, the server
will respond with the exception information includ-
ing the detailed message and stack trace which will be
rethrown by the client.

3.3.9 Enforcing Security Constraints

Since the job server is responsible for loading and
executing untrusted code, a security manager was
implemented to inhibit malicious actors. This feature
is important because users would not donate their
computing resources without any sort of security guar-
antee. The JVM provides a few ways to define security
policies. Firstly, a developer could declare a security
policy file for their program and specify it through the
command line arguments. This solution is not accept-
able for RMD because we need to simultaneously
grant permissions to the RMD platform whilst deny-
ing them to all untrusted code. To achieve this level
of flexibility we must implement a custom security
manager. Whenever an application attempts to invoke
privileged code such as network or file system access,
the JVM will check the system security manager to
determine whether the action is permitted.

The job server has a security policy that will deny
all permissions to untrusted code and this policy will
not interfere with any of the permissions required by
the job server. The security manager operates on a
per-thread basis so that it can allow the job server
to communicate with clients while at the same time
preventing untrusted code to access the internet or
other system resources. The JVM allows applications
to specify their own custom security manager at run-
time which is implemented by inheriting from the
java.lang.SecurityManager class. Every time a per-
mission check is done by the JVM, RMD’s security
manager checks the calling thread’s thread group, and
compares it with the thread group that jobs belong
to. When a new job arrives, it is dispatched onto the
thread-pool where each of its threads belong to the
same thread-group. This allows the security manager
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to differentiate between the RMD infrastructure and
untrusted code that may run on the machine.

3.3.10 Load Balancer

The load balancer has the important job of manag-
ing the use of resources on the network. This module
depends upon the communication module to handle
all network IO between clients and job servers. The
load balancer accepts connections from clients and
forwards their job request based on resource avail-
ability. For the simplicity of the RMD load balancer,
our prototype implementation only supports a round-
robin scheduling algorithm. However, due to our open
design, more sophisticated scheduling algorithms can
be implemented by the developer. After a client ini-
tializes a connection with a load balancer, it must
first send a migration request to the load balancer
before sending any job requests. This protocol acts the
same as direct communication between a client and
server, therefore the client does not need to distinguish
between a job server or load balancer. The load bal-
ancer must verify that a job server has the required
code before forwarding a job request to the chosen
server. This is a problem because of the one-to-many
relationship between the load balancer and job servers.
To solve this problem, the load balancer stores a map
between a JVM class name, and its bytecode instruc-
tions. It also records a list of each class file that the job
server has so it can prevent the migration of class files
that already exist on the job server. The migration pro-
cess is lazy and only occurs when a job request occurs
to a server that has not previously seen the required
class files.

3.3.11 Failure Handling

Failures are inevitable in a large-scale grid computing
network. Such failures are most likely to be caused
by network errors, which is why a few failure proto-
cols have been designed and implemented. In general,
failures during job execution are ignored, and the
job request is passed on to the next available job
server. However, this is not possible if no computing
resources are found on the grid. Handling this type of
error can be configured using a configuration file. Cur-
rently, there are three supported protocols to handle
this type of failure. In the first protocol, jobs are to be

Fig. 5 Local execution on failure

executed locally when there are no external computing
resources available (Fig. 5).

Secondly, such events can be handled with a wait
and retry protocol. If users decide to choose this
approach, they will not be bogged down by the local
execution of the jobs, but they must accept that any
network issues may not resolve themselves and no
error messages are displayed (Fig. 6).

Finally, the last protocol is the error protocol. If
a lack of resources ever occurs, the client will throw
an exception indicating that no external resources are
available.

Sometimes failure can occur after a job request has
been issued. In this event, it is preferred to cut losses

Fig. 6 Wait and retry
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and pass on the request to the next available job server.
This design decision was chosen because of the uncer-
tainty surrounding the other nodes in the network. A
cache-based system could have been implemented, but
given that the duration of each job execution is likely
to be relatively small, it is unlikely that the issue would
be resolved within that time frame. This would require
the client to attempt to reconnect to a server to retrieve
the result with no guarantees of success (Fig. 7).

4 System Evaluation

The RMD platform provides two forms of significant
overhead, initialization overhead and added overhead
for each job request. Users are advised to follow the
best practices that are discussed in Section 5 to limit
the effects of overhead on their job.

4.1 RMD Overhead

RMD jobs will observe a one-time initialization over-
head plus the overhead required to send each sub-
sequent job request. Initialization overhead occurs

Fig. 7 Disconnect protocol

during the first request to delegate a job. Firstly, RMD
must locate and connect to external load balancers
and/or job servers. At runtime, RMD must also deter-
mine the callsite of your job and determine all of
its dependencies. There are two determinants of this
upfront overhead, including the number of depen-
dencies that your job depends on and the network
throughput. In short, the greater the number of depen-
dencies used by your job, the more time it takes to
traverse the dependency graph and to send the class
files over the network. However, since the code migra-
tion process only needs to occur once, the overhead
applies a one-time upfront delay to the execution of
the program. Classes that are part of the Java or Kotlin
standard library are not migrated to the job server, as
they already exist on the server side.

Each job request has three forms of overhead after
the migration process has been completed. Firstly, the
job must be looked up in the cache to verify that
the code has been previously migrated to the exter-
nal job server. Next, the arguments of the job must
be serialized, which does provide a significant amount
of overhead when compared to low level platforms
like MPI. If you intend to write jobs that depend on
large amounts of data, the cost of marshalling/unmar-
shalling will dominate the other forms of overhead.

4.2 Experimental Results and Analysis

Behind the scenes, RMD is essentially an RPC sys-
tem with load balancing and code migration. To test
the remote evaluation performance of RMD, we mea-
sured a number of remote procedure calls that could
be invoked one after the other on a single machine. We
then compared the performance of RMD to Java RMI
using the same benchmark environment (Table 3). To
compare each platform, we counted the number of
invocations per second of two no-op benchmark func-
tions. The first benchmark function, shown in Fig. 8,
takes a list of integers (non primitive) as input and
sends them back to the client. The second benchmark
function, shown in Fig. 9, takes an array of primitive

Table 3 Benchmark environment

OS Ubuntu 19.04

JDK Open-JDK 8

CPU Intel i7 6700K
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Fig. 8 RMD vs RMI:
RPCs per second

integers as input and sends them back to the client.
This benchmark serves to show how the performance
scales as the size and complexity of the input to the
benchmark function changes.

From the results above you can see that when
marshalling and unmarshalling has a greater effect
on the performance (due to increased data size or
complexity), RMD makes significant gains in RPC
performance vs Java RMI. However, if the data being
transferred is primitive, the performance cost for mar-
shalling/unmarshalling is much less and the overhead
of RMD becomes much more apparent.

5 Practical use

Although RMD is simple to set up and configure, best
practices should be followed to improve the efficiency
of your system.

5.1 Writing Jobs

Before you begin implementing your jobs, check for
existing algorithms because you may not need to
modify their implementation to delegate their work-
load. You can delegate the jobs of existing code by

Fig. 9 RMD vs RMI:
RPCs per second
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making use of a method reference. If you detect an
unreasonable one-time delay prior to the delegation
of your job, try to limit the number of dependen-
cies used by your job. More dependencies will affect
the initialization overhead cost as this will require
the client to detect, locate, and migrate more code
at runtime. Jobs should be designed to take longer
than the network delay however, if they are too long,
a network or server-side failure could result in a
large delay because the job will need to be rede-
ployed. If you suspect the delays are due to network
throughput issues, try using 2-tier setup as shown in
Fig. 1.

If you plan to execute more than one asynchronous
job at the same time, pay attention to common concur-
rency pitfalls. Your callback methods are not guaran-
teed to run on the same thread, and should synchronize
the modification of variables, either by using a syn-
chronized block or atomic references. Failure to do
so may result in undesirable behaviour. For example,
consider a program that executes 1000 asynchronous
jobs and their callback function increments a global
counter. It is extremely likely that your counter may
not be equal to 1000 after completion.

Finally, pay attention to the context in which your
job executes. Your job should not attempt to mod-
ify the state of any field outside the scope of the job.
Instead, a result should always be returned by the job.
You may however accept the state of local and global
variables as input, so long as they are constant and
immutable. Modification of the state of any object or
reference outside the job will not transfer back to the
master program.

5.2 Setting up Servers

Both the load balancer and job server modules act as
standalone applications. You simply need to download
and execute the build artifacts. If you are planning
on hosting a job server, it should work out of the
box, without any configuration. To host a load bal-
ancer, you will need a very simple configuration file
to specify the location of external job servers.

5.2.1 Load Balancer

The configuration file of the load balancer should
point to the known job server in the grid. By making

use of the load balancer, clients do not need to know
about all the job servers on the network. This allows
administrators to easily scale up/down the size of the
grid without taking the clients offline for maintenance.
The geographic location of the load balancer should
be taken into account because the added networking
delay may not be worth the advantages of providing
an external load balancer.

For advanced usage, the load balancer’s behaviour
can be programmatically modified to exhibit
behaviour that is more beneficial to your use case.
For example, you may want to implement your own
scheduling algorithm that prioritizes job servers by
lowest CPU utilization, or lowest network latency.

6 Conclusion and Future Work

We have created an intuitive interface for users to
efficiently perform jobs securely on the grid. We
implemented a load balancer to prevent servers from
becoming over or underutilized, which keeps our
servers running as efficiently as possible. RMD also
supports resource donation, in which a client could
opt-in to receive job requests and complete them for
other users. This will allow the computational power
of the grid to expand and run more jobs concurrently.
RMD makes it easier for researchers to solve paral-
lelizable problems by providing a highly abstract and
simple way to define and execute different tasks on a
cluster or grid computer.

If a researcher is in need of an easy to set up cluster
or grid computing platform, they may benefit from the
usability features provided by RMD. However, RMD
is not without limitations. For example, it is not the
tool for processing large amounts of data.

In the future, we would like to address some of
the shortcomings of the RMD framework. Some-
times we wish to develop jobs that can be provided
with continuous updates between the client and server
during their execution. We aim to support commu-
nication channels such that objects could be trans-
ferred between the master program and its remote
jobs. Unlike popular HPC platforms such as MPI,
RMD favors a high level of abstraction for usability
reasons. This prevents the programmer from having
explicit control over the destination of each mes-
sage. Without low level messaging capabilities, the
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programmer cannot create a ring topology. We envi-
sion further development and focus on the Kotlin DSL
to accomplish the creation of ring topologies in a
highly abstract way. Finally, RMD does not address
optimization concerns that are raised with a high
abstract design that does not provide the developer
with low level control. We aim to provide a network-
based grid optimizer such as the techniques defined
in [12].
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