Introduction and Implementation for Finite Element Methods

Chapter 10: Finite elements for 2D unsteady Navier-Stokes equations

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- Mewton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Outline

- Weak formulation
- 2 Semi-discretization
- 3 Full discretization
- Mewton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Target problem

Consider the 2D unsteady unsteady Navier-Stokes equation equation

$$\begin{aligned} &\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f}, & \text{in } \Omega \times [0, T], \\ &\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \times [0, T], \\ &\mathbf{u} = \mathbf{g}, & \text{on } \partial \Omega \times [0, T], \\ &\mathbf{u} = \mathbf{u}_0, & p = p_0, & \text{at } t = 0 \text{ and in } \Omega. \end{aligned}$$

where Ω is a 2D domain, [0,T] is the time interval, $\mathbf{f}(x,y,t)$ is a given function on $\Omega \times [0,T]$, $\mathbf{g}(x,y,t)$ is a given function on $\partial \Omega \times [0,T]$, $\mathbf{u}_0(x,y)$ and $p_0(x,y)$ are given functions on Ω at t=0, $\mathbf{u}(x,y,t)$ and p(x,y,t) are the unknown functions, and

$$\mathbf{u}(x,y,t) = (u_1, u_2)^t, \quad \mathbf{f}(x,y,t) = (f_1, f_2)^t,$$

$$\mathbf{g}(x,y,t) = (g_1, g_2)^t, \quad \mathbf{u}_0(x,y) = (u_{10}, u_{20})^t.$$

Target problem

The nonlinear advection is defined as

$$(\mathbf{u} \cdot \nabla)\mathbf{u} = \begin{pmatrix} u_1 \frac{\partial u_1}{\partial x} + u_2 \frac{\partial u_1}{\partial y} \\ u_1 \frac{\partial u_2}{\partial x} + u_2 \frac{\partial u_2}{\partial y} \end{pmatrix}.$$

• The stress tensor $\mathbb{T}(\mathbf{u}, p)$ is defined as

$$\mathbb{T}(\mathbf{u}, p) = 2\nu \mathbb{D}(\mathbf{u}) - p\mathbb{I}$$

where ν is the viscosity and the deformation tensor

$$\mathbb{D}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^t).$$

Target problem

• In more details, the deformation tensor can be written as

$$\mathbb{D}(\mathbf{u}) = \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & \frac{\partial u_2}{\partial y} \end{pmatrix}.$$

Hence the stress tensor can be written as

$$\mathbb{T}(\mathbf{u}, p) = \begin{pmatrix} 2\nu \frac{\partial u_1}{\partial x} - p & \nu \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \nu \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & 2\nu \frac{\partial u_2}{\partial y} - p \end{pmatrix}.$$

• First, take the inner product with a vector function $\mathbf{v}(x,y) = (v_1, v_2)^t$ on both sides of the unsteady Navier-Stokes equation:

$$\mathbf{u}_{t} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \mathbb{T}(\mathbf{u}, \rho) = \mathbf{f} \text{ in } \Omega$$

$$\Rightarrow \mathbf{u}_{t} \cdot \mathbf{v} + (\mathbf{u} \cdot \nabla)\mathbf{u} \cdot \mathbf{v} - \nabla \cdot \mathbb{T}(\mathbf{u}, \rho) \cdot \mathbf{v} = \mathbf{f} \cdot \mathbf{v} \text{ in } \Omega$$

$$\Rightarrow \int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \, dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla)\mathbf{u} \cdot \mathbf{v} \, dxdy$$

$$- \int_{\Omega} (\nabla \cdot \mathbb{T}(\mathbf{u}, \rho)) \cdot \mathbf{v} \, dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy$$

• Second, multiply the divergence free equation by a function q(x, y):

$$\nabla \cdot \mathbf{u} = 0 \quad \Rightarrow \quad (\nabla \cdot \mathbf{u})q = 0$$
$$\Rightarrow \quad \int_{\Omega} (\nabla \cdot \mathbf{u})q \, dx dy = 0.$$

• $\mathbf{u}(x, y, t)$ and p(x, y, t) are called trail functions and $\mathbf{v}(x, y)$ and q(x, y) are called test functions.

• Using integration by parts in multi-dimension:

$$\int_{\Omega} (\nabla \cdot \mathbb{T}) \cdot \mathbf{v} \ dx dy = \int_{\partial \Omega} (\mathbb{T} \mathbf{n}) \cdot \mathbf{v} \ ds - \int_{\Omega} \mathbb{T} : \nabla \mathbf{v} \ dx dy,$$

where $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial \Omega$, we obtain

$$\int_{\Omega} \mathbb{T}(\mathbf{u}, p) : \nabla \mathbf{v} \ dxdy - \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p) \mathbf{n}) \cdot \mathbf{v} \ ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy.$$

Here,

$$A:B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} : \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$= a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}.$$

• Using the above definition for A:B, it is not difficult to verify (an independent study project topic) that

$$\mathbb{T}(\mathbf{u}, p) : \nabla \mathbf{v} = (2\nu \mathbb{D}(\mathbf{u}) - p\mathbb{I}) : \nabla \mathbf{v}
= 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) - p(\nabla \cdot \mathbf{v}).$$

Hence we obtain

$$\int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \, dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \, dxdy + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \, dxdy - \int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy, - \int_{\Omega} (\nabla \cdot \mathbf{u}) q \, dxdy = 0.$$

Here we multiply the second equation by -1 in order to keep the matrix formulation symmetric later.

- Since the solution on the domain boundary $\partial\Omega$ are given by $\mathbf{u}(x,y,t)=\mathbf{g}(x,y,t)$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v}=0$ on $\partial\Omega$.
- Hence

$$\int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \, dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \, dxdy + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy
- \int_{\Omega} \rho(\nabla \cdot \mathbf{v}) \, dxdy = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy,
- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \, dxdy = 0.$$

• Define $[H^1(\Omega)]^2 = H^1(\Omega) \times H^1(\Omega)$ and

$$H^{1}(0,T;[H^{1}(\Omega)]^{2}) = \{\mathbf{v}(\cdot,t), \frac{\partial \mathbf{v}}{\partial t}(\cdot,t) \in [H^{1}(\Omega)]^{2}, \forall t \in [0,T]\},$$

$$L^{2}(0,T;L^{2}(\Omega)) = \{q(\cdot,t) \in L^{2}(\Omega), \forall t \in [0,T]\}.$$

• Weak formulation in the vector format: find $\mathbf{u} \in H^1(0, T; [H^1(\Omega)]^2)$ and $p \in L^2(0, T; L^2(\Omega))$ such that

$$\begin{split} & \int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \ dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \ dxdy \\ & + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy \\ & = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy, \\ & - \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0, \end{split}$$

for any $\mathbf{v} \in [H_0^1(\Omega)]^2$ and $q \in L^2(\Omega)$.

Define

$$c(\mathbf{w}, \mathbf{u}, \mathbf{v}) = \int_{\Omega} (\mathbf{w} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \, dx dy,$$

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dx dy,$$

$$b(\mathbf{u}, q) = -\int_{\Omega} (\nabla \cdot \mathbf{u}) q \, dx dy,$$

$$(\mathbf{f}, \mathbf{v}) = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dx dy.$$

• Weak formulation: find $\mathbf{u} \in H^1(0, T; [H^1(\Omega)]^2)$ and $p \in L^2(0, T; L^2(\Omega))$ such that

$$(\mathbf{u}_t, \mathbf{v}) + c(\mathbf{u}, \mathbf{u}, \mathbf{v}) + a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, p) = (\mathbf{f}, \mathbf{v}),$$

 $b(\mathbf{u}, q) = 0,$

for any $\mathbf{v} \in [H^1_0(\Omega)]^2$ and $q \in L^2(\Omega)$.

• In more details,

$$\mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \\
= \begin{pmatrix} \frac{\partial u_1}{\partial x} & \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) & \frac{\partial u_2}{\partial y} \end{pmatrix} \\
: \begin{pmatrix} \frac{\partial v_1}{\partial x} & \frac{1}{2} \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) & \frac{\partial v_2}{\partial y} \end{pmatrix} \\
= \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + \frac{1}{4} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) \\
+ \frac{1}{4} \left(\frac{\partial u_1}{\partial y} + \frac{\partial u_2}{\partial x} \right) \left(\frac{\partial v_1}{\partial y} + \frac{\partial v_2}{\partial x} \right) + \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y}.$$

Hence

$$\mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v})
= \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} + \frac{1}{2} \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y}
+ \frac{1}{2} \frac{\partial u_1}{\partial y} \frac{\partial v_2}{\partial x} + \frac{1}{2} \frac{\partial u_2}{\partial x} \frac{\partial v_1}{\partial y} + \frac{1}{2} \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x}.$$

Then

$$\int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy$$

$$= \int_{\Omega} \nu \left(2 \frac{\partial u_1}{\partial x} \frac{\partial v_1}{\partial x} + 2 \frac{\partial u_2}{\partial y} \frac{\partial v_2}{\partial y} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} + \frac{\partial u_1}{\partial y} \frac{\partial v_1}{\partial y} + \frac{\partial u_2}{\partial x} \frac{\partial v_2}{\partial x} \right) \, dxdy.$$

We also have

$$\begin{split} &\int_{\Omega} \mathbf{u}_t \cdot \mathbf{v} \ dxdy = \int_{\Omega} \frac{\partial u_1}{\partial t} v_1 \ dxdy + \int_{\Omega} \frac{\partial u_2}{\partial t} v_2 \ dxdy, \\ &\int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \ dxdy \\ &= \int_{\Omega} \left(u_1 \frac{\partial u_1}{\partial x} v_1 + u_2 \frac{\partial u_1}{\partial y} v_1 + u_1 \frac{\partial u_2}{\partial x} v_2 + u_2 \frac{\partial u_2}{\partial y} v_2 \right) \ dxdy, \\ &\int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy = \int_{\Omega} \left(p \frac{\partial v_1}{\partial x} + p \frac{\partial v_2}{\partial y} \right) \ dxdy, \\ &\int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy = \int_{\Omega} (f_1 v_1 + f_2 v_2) \ dxdy, \\ &\int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = \int_{\Omega} \left(\frac{\partial u_1}{\partial x} q + \frac{\partial u_2}{\partial y} q \right) \ dxdy. \end{split}$$

• Weak formulation in the scalar format: find $u_1 \in H^1(\Omega)$, $u_2 \in H^1(\Omega)$, and $p \in L^2(\Omega)$ such that

$$\begin{split} &\int_{\Omega} \frac{\partial u_{1}}{\partial t} v_{1} \, dx dy + \int_{\Omega} \frac{\partial u_{2}}{\partial t} v_{2} \, dx dy \\ &+ \int_{\Omega} \left(u_{1} \frac{\partial u_{1}}{\partial x} v_{1} + u_{2} \frac{\partial u_{1}}{\partial y} v_{1} + u_{1} \frac{\partial u_{2}}{\partial x} v_{2} + u_{2} \frac{\partial u_{2}}{\partial y} v_{2} \right) \, dx dy \\ &+ \int_{\Omega} \nu \left(2 \frac{\partial u_{1}}{\partial x} \frac{\partial v_{1}}{\partial x} + 2 \frac{\partial u_{2}}{\partial y} \frac{\partial v_{2}}{\partial y} + \frac{\partial u_{1}}{\partial y} \frac{\partial v_{1}}{\partial y} \right. \\ &+ \frac{\partial u_{1}}{\partial y} \frac{\partial v_{2}}{\partial x} + \frac{\partial u_{2}}{\partial x} \frac{\partial v_{1}}{\partial y} + \frac{\partial u_{2}}{\partial x} \frac{\partial v_{2}}{\partial x} \right) \, dx dy \\ &- \int_{\Omega} \left(p \frac{\partial v_{1}}{\partial x} + p \frac{\partial v_{2}}{\partial y} \right) \, dx dy = \int_{\Omega} (f_{1} v_{1} + f_{2} v_{2}) \, dx dy. \\ &- \int_{\Omega} \left(\frac{\partial u_{1}}{\partial x} q + \frac{\partial u_{2}}{\partial y} q \right) \, dx dy = 0. \end{split}$$

for any $v_1\in H^1_0(\Omega),\ v_2\in H^1_0(\Omega),\ \text{and}\ q\in L^2(\Omega).$

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- 4 Newton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

- Consider a finite element space U_h ⊂ H¹(Ω) for the velocity and a finite element space W_h ⊂ L²(Ω) for the pressure.
 Define U_{h0} to be the space which consists of the functions of U_h with value 0 on the Dirichlet boundary.
- Then the Galerkin formulation is to find $\mathbf{u}_h \in H^1(0, T; [U_h]^2)$ and $p \in L^2(0, T; W_h)$ such that

$$(\mathbf{u}_{h_t}, \mathbf{v}) + c(\mathbf{u}_h, \mathbf{u}_h, \mathbf{v}_h) + a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = (\mathbf{f}, \mathbf{v}_h),$$

$$b(\mathbf{u}_h, q_h) = 0,$$

for any $\mathbf{v}_h \in [U_{h0}]^2$ and $q_h \in W_h$.

• For an easier implementation, we use the following Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later): find $\mathbf{u}_h \in H^1(0,T;[U_h]^2)$ and $p \in L^2(0,T;W_h)$ such that

$$(\mathbf{u}_{h_t}, \mathbf{v}) + c(\mathbf{u}_h, \mathbf{u}_h, \mathbf{v}_h) + a(\mathbf{u}_h, \mathbf{v}_h) + b(\mathbf{v}_h, p_h) = (\mathbf{f}, \mathbf{v}_h),$$

$$b(\mathbf{u}_h, q_h) = 0,$$

for any $\mathbf{v}_h \in [U_h]^2$ and $q_h \in W_h$.

• In more details of the vector format, the Galerkin formulation (without considering the Dirichlet boundary condition, which will be handled later) is to find $\mathbf{u}_h \in H^1(0, T; [U_h]^2)$ and $p \in L^2(0, T; W_h)$ such that

$$\int_{\Omega} \mathbf{u}_{h_{t}} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Omega} (\mathbf{u}_{h} \cdot \nabla) \mathbf{u}_{h} \cdot \mathbf{v}_{h} \, dxdy
+ \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}(\nabla \cdot \mathbf{v}_{h}) \, dxdy
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{h} \, dxdy,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h}) q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in [U_h]^2$ and $q_h \in W_h$.

- In our numerical example, $U_h = span\{\phi_j\}_{j=1}^{N_b}$ and $W_h = span\{\psi_j\}_{j=1}^{N_{bp}}$ are chosen to be the finite element spaces with the quadratic global basis functions $\{\phi_j\}_{j=1}^{N_b}$ and linear global basis functions $\{\psi_j\}_{j=1}^{N_{bp}}$, which are defined in Chapter 2. They are called Taylor-Hood finite elements.
- Why do we choose the pairs of finite elements in this way?
- Stability of mixed finite elements: inf-sup condition.

$$\inf_{0 \neq q_h \in W_h} \sup_{0 \neq \mathbf{u}_h \in U_h \times U_h} \frac{b(\mathbf{u}_h, q_h)}{\|\nabla \mathbf{u}_h\|_0 \|q_h\|_0} > \beta,$$

where $\beta > 0$ is a constant independent of mesh size h.

 See other course materials and references for the theory and more examples of stable mixed finite elements for unsteady Navier-Stokes equation.

• In the scalar format, the Galerkin formulation is to find $u_{1h} \in H^1(0, T; U_h)$, $u_{2h} \in H^1(0, T; U_h)$, and $p_h \in L^2(0, T; W_h)$ such that

$$\begin{split} &\int_{\Omega} \frac{\partial u_{1h}}{\partial t} v_{1h} \, dx dy + \int_{\Omega} \frac{\partial u_{2h}}{\partial t} v_{2h} \, dx dy \\ &+ \int_{\Omega} \left(u_{1h} \frac{\partial u_{1h}}{\partial x} v_{1h} + u_{2h} \frac{\partial u_{1h}}{\partial y} v_{1h} + u_{1h} \frac{\partial u_{2h}}{\partial x} v_{2h} + u_{2h} \frac{\partial u_{2h}}{\partial y} v_{2h} \right) \, dx dy \\ &+ \int_{\Omega} \nu \left(2 \frac{\partial u_{1h}}{\partial x} \frac{\partial v_{1h}}{\partial x} + 2 \frac{\partial u_{2h}}{\partial y} \frac{\partial v_{2h}}{\partial y} + \frac{\partial u_{1h}}{\partial y} \frac{\partial v_{1h}}{\partial y} \right. \\ &+ \frac{\partial u_{1h}}{\partial y} \frac{\partial v_{2h}}{\partial x} + \frac{\partial u_{2h}}{\partial x} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{2h}}{\partial x} \frac{\partial v_{2h}}{\partial x} \right) \, dx dy \\ &- \int_{\Omega} \left(p_h \frac{\partial v_{1h}}{\partial x} + p_h \frac{\partial v_{2h}}{\partial y} \right) \, dx dy = \int_{\Omega} (f_1 v_{1h} + f_2 v_{2h}) \, dx dy. \\ &- \int_{\Omega} \left(\frac{\partial u_{1h}}{\partial x} q_h + \frac{\partial u_{2h}}{\partial y} q_h \right) \, dx dy = 0. \end{split}$$

for any $v_{1h} \in U_h$, $v_{2h} \in U_h$, and $q_h \in W_h$.

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- Mewton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Full discretization

- Assume that we have a uniform partition of [0, T] into M_m elements with mesh size $\triangle t$.
- The mesh nodes are $t_m = m \triangle t$, $m = 0, 1, \dots, M_m$.
- Let \mathbf{u}_h^0 and p_h^0 denote the given initial condition at t_0 .
- Let \mathbf{u}_h^m and p_h^m denote the numerical solution at t_m .
- For a simple illustration, we consider the full discretization with backward Euler scheme (without considering the Dirichlet boundary condition, which will be handled later): for $m=0,\cdots,M_m-1$, find $\mathbf{u}_h^{m+1}\in [U_h]^2$ and $p_h^{m+1}\in W_h$ such that

$$(\frac{\mathbf{u}_{h}^{m+1} - \mathbf{u}_{h}^{m}}{\triangle t}, \mathbf{v}) + c(\mathbf{u}_{h}^{m+1}, \mathbf{u}_{h}^{m+1}, \mathbf{v}_{h}) + a(\mathbf{u}_{h}^{m+1}, \mathbf{v}_{h})$$
$$+b(\mathbf{v}_{h}, p_{h}^{m+1}) = (\mathbf{f}(t_{m+1}), \mathbf{v}_{h}),$$
$$b(\mathbf{u}_{h}^{m+1}, q_{h}) = 0,$$

Full discretization

• That is, for $m=0,\cdots,M_m-1$, find $\mathbf{u}_h^{m+1}\in [U_h]^2$ and $p_h^{m+1}\in W_h$ such that

$$\int_{\Omega} \frac{\mathbf{u}_{h}^{m+1} - \mathbf{u}_{h}^{m}}{\Delta t} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Omega} (\mathbf{u}_{h}^{m+1} \cdot \nabla) \mathbf{u}_{h}^{m+1} \cdot \mathbf{v}_{h} \, dxdy
+ \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}^{m+1}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}^{m+1} (\nabla \cdot \mathbf{v}_{h}) \, dxdy
= \int_{\Omega} \mathbf{f}(t_{m+1}) \cdot \mathbf{v}_{h} \, dxdy,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h}^{m+1}) q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in [U_h]^2$ and $q_h \in W_h$.

Full discretization

• For $m=0,\cdots,M_m-1$, find $u_{1h}^{m+1},\ u_{2h}^{m+1}\in U_h$ and $p_h^{m+1}\in W_h$ such that

$$\begin{split} &\int_{\Omega} \frac{u_{1h}^{m+1} - u_{1h}^{m}}{\Delta t} v_{1h} \ dxdy + \int_{\Omega} \frac{u_{2h}^{m+1} - u_{2h}^{m}}{\Delta t} v_{2h} \ dxdy + \int_{\Omega} \left(u_{1h}^{m+1} \frac{\partial u_{1h}^{m+1}}{\partial x} v_{1h} \right) \\ &+ u_{2h}^{m+1} \frac{\partial u_{1h}^{m+1}}{\partial y} v_{1h} + u_{1h}^{m+1} \frac{\partial u_{2h}^{m+1}}{\partial x} v_{2h} + u_{2h}^{m+1} \frac{\partial u_{2h}^{m+1}}{\partial y} v_{2h} \right) \ dxdy \\ &+ \int_{\Omega} \nu \left(2 \frac{\partial u_{1h}^{m+1}}{\partial x} \frac{\partial v_{1h}}{\partial x} + 2 \frac{\partial u_{2h}^{m+1}}{\partial y} \frac{\partial v_{2h}}{\partial y} + \frac{\partial u_{1h}^{m+1}}{\partial y} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{1h}^{m+1}}{\partial y} \frac{\partial v_{2h}}{\partial x} \right) \ dv_{1h} \\ &+ \frac{\partial u_{2h}^{m+1}}{\partial x} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{2h}^{m+1}}{\partial x} \frac{\partial v_{2h}}{\partial x} \right) \ dxdy - \int_{\Omega} \left(p_{h}^{m+1} \frac{\partial v_{1h}}{\partial x} + p_{h}^{m+1} \frac{\partial v_{2h}}{\partial y} \right) \ dxdy \\ &= \int_{\Omega} f_{1}(t_{m+1}) v_{1h} \ dxdy \int_{\Omega} f_{2}(t_{m+1}) v_{2h} \ dxdy, \\ &- \int_{\Omega} \left(\frac{\partial u_{1h}^{m+1}}{\partial x} q_{h} + \frac{\partial u_{2h}^{m+1}}{\partial y} q_{h} \right) dxdy = 0, \end{split}$$

for any $v_{1h} \in U_h$, $v_{2h} \in U_h$, and $q_h \in W_h$.

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- 4 Newton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Newton's iteration

- How to handle the nonlinear terms in the full discretization?
- At each time iteration step of the full discretization, we have a steady nonlinear problem, which is similar to to the steady Navier-Stokes equation.
- Newton's iteration at each time iteration step!
- Given the initial condition \mathbf{u}_h^0 and p_h^0 at the initial time

At the $(m+1)^{th}$ step $(m=0,\cdots,M_m-1)$ of the time iteration, we consider the following Newton's iteration:

- Initial guess: $\mathbf{u}_h^{m+1,(0)}$ and $p_h^{m+1,(0)}$. Usually they can be the solutions \mathbf{u}_h^m and p_h^m of the previous time iteration step.
- Newton's iteration for full discretization: for $l=1,2,\cdots,L$, find $\mathbf{u}_h^{m+1,(l)} \in U_h \times U_h$ and $p_h^{m+1,(l)} \in W_h$ such that

$$(\frac{\mathbf{u}_{h}^{m+1,(l)} - \mathbf{u}_{h}^{m}}{\Delta t}, \mathbf{v}) + c(\mathbf{u}_{h}^{m+1,(l)}, \mathbf{u}_{h}^{m+1,(l-1)}, \mathbf{v}_{h})$$

$$+c(\mathbf{u}_{h}^{m+1,(l-1)}, \mathbf{u}_{h}^{m+1,(l)}, \mathbf{v}_{h}) + a(\mathbf{u}_{h}^{m+1,(l)}, \mathbf{v}_{h}) + b(\mathbf{v}_{h}, p_{h}^{m+1,(l)})$$

$$= (\mathbf{f}(t_{m+1}), \mathbf{v}_{h}) + c(\mathbf{u}_{h}^{m+1,(l-1)}, \mathbf{u}_{h}^{m+1,(l-1)}, \mathbf{v}_{h}),$$

$$b(\mathbf{u}_{h}^{m+1,(l)}, q_{h}) = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Let \mathbf{u}_h^{m+1} be the final $\mathbf{u}_h^{m+1,(l)}$ from the above iteration.

- Initial guess: $\mathbf{u}_h^{m+1,(0)}$ and $p_h^{m+1,(0)}$. Usually they can be the solutions \mathbf{u}_h^m and p_h^m of the previous time iteration step.
- Newton's iteration for full discretization in the vector format: for $I=1,2,\cdots,L$, find $\mathbf{u}_h^{m+1,(l)}\in U_h\times U_h$ and $p_h^{m+1,(l)}\in W_h$ such that

$$\int_{\Omega} \frac{\mathbf{u}_{h}^{m+1,(l)} - \mathbf{u}_{h}^{m}}{\triangle t} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Omega} (\mathbf{u}_{h}^{m+1,(l)} \cdot \nabla) \mathbf{u}_{h}^{m+1,(l-1)} \cdot \mathbf{v}_{h} \, dxdy
+ \int_{\Omega} (\mathbf{u}_{h}^{m+1,(l-1)} \cdot \nabla) \mathbf{u}_{h}^{m+1,(l)} \cdot \mathbf{v}_{h} \, dxdy
+ \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}_{h}^{m+1,(l)}) : \mathbb{D}(\mathbf{v}_{h}) \, dxdy - \int_{\Omega} p_{h}^{m+1,(l)} (\nabla \cdot \mathbf{v}_{h}) \, dxdy
= \int_{\Omega} \mathbf{f} \cdot \mathbf{v}_{h} \, dxdy + \int_{\Omega} (\mathbf{u}_{h}^{m+1,(l-1)} \cdot \nabla) \mathbf{u}_{h}^{m+1,(l-1)} \cdot \mathbf{v}_{h} \, dxdy,
- \int_{\Omega} (\nabla \cdot \mathbf{u}_{h}^{m+1,(l)}) q_{h} \, dxdy = 0,$$

for any $\mathbf{v}_h \in U_h \times U_h$ and $q_h \in W_h$.

• Let \mathbf{u}_h^{m+1} be the final $\mathbf{u}_h^{m+1,(l)}$ from the above iteration.

- Initial guess: $u_{1h}^{m+1,(0)}$, $u_{2h}^{m+1,(0)}$, and $p_h^{m+1,(0)}$. Usually they can be the solutions u_{1h}^m , u_{2h}^m , and p_h^m of the previous time iteration step.
- Newton's iteration for full discretization in the scalar format: for $l=1,2,\cdots,L$, find $u_{1h}^{m+1,(l)}\in U_h$, $u_{2h}^{m+1,(l)}\in U_h$, and $p_h^{m+1,(l)}\in W_h$ such that

$$\int_{\Omega} \frac{u_{1h}^{m+1,(l)} - u_{1h}^{m}}{\Delta t} v_{1h} \, dxdy + \int_{\Omega} \frac{u_{2h}^{m+1,(l)} - u_{2h}^{m}}{\Delta t} v_{2h} \, dxdy + \int_{\Omega} \left(u_{1h}^{m+1,(l)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} v_{1h} + u_{2h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} v_{1h} + u_{1h}^{m+1,(l)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} v_{2h} + u_{2h}^{m+1,(l)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial y} v_{2h} \right) \, dxdy \\ + \int_{\Omega} \left(u_{1h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l)}}{\partial x} v_{1h} + u_{2h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l)}}{\partial y} v_{1h} + u_{1h}^{m+1,(l)} \frac{\partial u_{2h}^{m+1,(l)}}{\partial x} v_{2h} \right) \, dxdy \\ + \int_{\Omega} \nu \left(2 \frac{\partial u_{1h}^{m+1,(l)}}{\partial x} \frac{\partial v_{1h}}{\partial x} + 2 \frac{\partial u_{2h}^{m+1,(l)}}{\partial y} \frac{\partial v_{2h}}{\partial y} + \frac{\partial u_{1h}^{m+1,(l)}}{\partial y} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{1h}^{m+1,(l)}}{\partial y} \frac{\partial v_{2h}}{\partial x} \right) \\ + \frac{\partial u_{2h}^{m+1,(l)}}{\partial x} \frac{\partial v_{1h}}{\partial y} + \frac{\partial u_{2h}^{m+1,(l)}}{\partial x} \frac{\partial v_{2h}}{\partial x} \right) \, dxdy - \int_{\Omega} \left(p_{h}^{m+1,(l)} \frac{\partial v_{1h}}{\partial x} + p_{h}^{m+1,(l)} \frac{\partial v_{2h}}{\partial y} \right) \, dxdy \\ = \int_{\Omega} \left(f_{1} v_{1h} + f_{2} v_{2h} \right) \, dxdy + \int_{\Omega} \left(u_{1h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} v_{1h} + u_{2h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} v_{1h} \right) \\ + u_{1h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} v_{2h} + u_{2h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} v_{2h} \right) \, dxdy,$$

Continued formulation:

$$-\int_{\Omega} \left(\frac{\partial u_{1h}^{m+1,(I)}}{\partial x} q_h + \frac{\partial u_{2h}^{m+1,(I)}}{\partial y} q_h \right) dx dy = 0.$$

for any $v_{1h} \in U_h$, $v_{2h} \in U_h$, and $q_h \in W_h$.

• Let u_{1h}^{m+1} and u_{2h}^{m+1} be the final $u_{1h}^{m+1,(l)}$ and $u_{2h}^{m+1,(l)}$ from the above iteration.

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- Mewton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Matrix formulation

• Since $u_{1h}^{m+1,(I)}$, $u_{2h}^{m+1,(I)}$, u_{1h}^m , $u_{2h}^m \in U_h = span\{\phi_j\}_{j=1}^{N_b}$ and $p_h^{m+1,(I)}$, $p_h^m \in W_h = span\{\psi_j\}_{j=1}^{N_{bp}}$, then

$$u_{1h}^{m+1,(I)} = \sum_{j=1}^{N_b} u_{1j}^{m+1,(I)} \phi_j, \quad u_{1h}^m = \sum_{j=1}^{N_b} u_{1j}^m \phi_j,$$

$$u_{2h}^{m+1,(I)} = \sum_{j=1}^{N_b} u_{2j}^{m+1,(I)} \phi_j, \quad u_{2h}^m = \sum_{j=1}^{N_b} u_{2j}^m \phi_j$$

$$p_h^{m+1,(I)} = \sum_{j=1}^{N_{bp}} p_j^{m+1,(I)} \psi_j, \quad p_h^m = \sum_{j=1}^{N_{bp}} p_j^m \psi_j,$$

for some coefficients
$$u_{1j}^{m+1,(I)}$$
, $u_{2j}^{m+1,(I)}$, u_{1j}^{m} , u_{2j}^{m} $(j=1,\cdots,N_b)$, and $p_{j}^{m+1,(I)}$, p_{j}^{m} , $(j=1,\cdots,N_{bp})$.

- If we can set up a linear algebraic system for $u_{1j}^{m+1,(I)}$, $u_{2j}^{m+1,(I)}$ $(j=1,\cdots,N_b)$, and $p_j^{m+1,(I)}$ $(j=1,\cdots,N_{bp})$, then we can solve it to obtain the finite element solution $\mathbf{u}_h^{m+1,(I)} = (u_{1h}^{m+1,(I)}, u_{2h}^{m+1,(I)})^t$ and $p_h^{m+1,(I)}$ at the step I $(I=1,2,\cdots,L)$ of Newton's iteration.
- For the first equation at the step I ($I=1,2,\cdots,L$) of Newton's iteration, we choose $\mathbf{v}_h=(\phi_i,0)^t$ ($i=1,\cdots,N_b$) and $\mathbf{v}_h=(0,\phi_i)^t$ ($i=1,\cdots,N_b$). That is, in the first set of test functions, we choose $v_{1h}=\phi_i$ ($i=1,\cdots,N_b$) and $v_{2h}=0$; in the second set of test functions, we choose $v_{1h}=0$ and $v_{2h}=\phi_i$ ($i=1,\cdots,N_b$).
- For the second equation at the step I ($I=1,2,\cdots,L$) of Newton's iteration, we choose $q_h=\psi_i$ ($i=1,\cdots,N_{bp}$).

• Set $\mathbf{v}_h = (\phi_i, 0)^t$, i.e., $v_{1h} = \phi_i$ and $v_{2h} = 0$ $(i = 1, \dots, N_b)$, in the first equation at the step I $(I = 1, 2, \dots, L)$ of Newton's iteration. Then

 $=\int_{\Omega}f_{1}\phi_{i}dxdy+\int_{\Omega}u_{1h}^{m+1,(l-1)}\frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x}\phi_{i}dxdy+\int_{\Omega}u_{2h}^{m+1,(l-1)}\frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x}\phi_{i}dxdy.$

• Set $\mathbf{v}_h = (0, \phi_i)^t$, i.e., $v_{1h} = 0$ and $v_{2h} = \phi_i$ $(i = 1, \dots, N_b)$, in the first equation of the Galerkin formulation at the step I ($I=1,2,\cdots,L$) of Newton's iteration. Then

$$\begin{split} \frac{1}{\Delta t} \int_{\Omega} & (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \phi_j) \phi_i \ dxdy - \frac{1}{\Delta t} \int_{\Omega} (\sum_{j=1}^{N_b} u_{2j}^{m} \phi_j) \phi_i \ dxdy \\ & + \int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} (\sum_{j=1}^{N_b} u_{1j}^{m+1,(l)} \phi_j) \phi_i dxdy + \int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial y} (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \phi_j) \phi_i dxdy \\ & + \int_{\Omega} u_{1h}^{m+1,(l-1)} (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \frac{\partial \phi_j}{\partial x}) \phi_i dxdy + \int_{\Omega} u_{2h}^{m+1,(l-1)} (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \frac{\partial \phi_j}{\partial y}) \phi_i dxdy \\ & + 2 \int_{\Omega} \nu (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \frac{\partial \phi_j}{\partial y}) \frac{\partial \phi_i}{\partial y} dxdy + \int_{\Omega} \nu (\sum_{j=1}^{N_b} u_{1j}^{m+1,(l)} \frac{\partial \phi_j}{\partial y}) \frac{\partial \phi_i}{\partial x} dxdy \\ & + \int_{\Omega} \nu (\sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \frac{\partial \phi_j}{\partial x}) \frac{\partial \phi_i}{\partial x} dxdy - \int_{\Omega} (\sum_{j=1}^{N_{bp}} p_j^{m+1,(l)} \psi_j) \frac{\partial \phi_i}{\partial y} dxdy \\ & = \int_{\Omega} f_2 \phi_i dxdy + \int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_i dxdy + \int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_i dxdy = \int_{\Omega} \int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \frac{\partial u_{2h}^{m$$

• Set $q_h=\psi_i$ $(i=1,\cdots,N_{bp})$ in the second equation of the Galerkin formulation at the step I $(I=1,2,\cdots,L)$ of Newton's iteration. Then

$$-\int_{\Omega} \left(\sum_{j=1}^{N_b} u_{1j}^{m+1,(I)} \frac{\partial \phi_j}{\partial x} \right) \psi_i \ dxdy - \int_{\Omega} \left(\sum_{j=1}^{N_b} u_{2j}^{m+1,(I)} \frac{\partial \phi_j}{\partial y} \right) \psi_i \ dxdy = 0.$$

• Simplify the above three sets of equations, we obtain

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j}^{m+1,(l)} \Big(\frac{1}{\Delta t} \int_{\Omega} \phi_j \phi_i \ dxdy + 2 \int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial x} \ dxdy + \int_{\Omega} \nu \frac{\partial \phi_j}{\partial y} \frac{\partial \phi_i}{\partial y} \ dxdy \\ &+ \int_{\Omega} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} \phi_j \phi_i \ dxdy + \int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial \phi_j}{\partial x} \phi_i \ dxdy \\ &+ \int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial \phi_j}{\partial y} \phi_i \ dxdy \Big) + \sum_{j=1}^{N_b} u_{2j}^{m+1,(l)} \Big(\int_{\Omega} \nu \frac{\partial \phi_j}{\partial x} \frac{\partial \phi_i}{\partial y} \ dxdy \\ &+ \int_{\Omega} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} \phi_j \phi_i \ dxdy \Big) + \sum_{j=1}^{N_{bp}} \rho_j^{m+1,(l)} \left(- \int_{\Omega} \psi_j \frac{\partial \phi_i}{\partial x} \ dxdy \right) \\ &= \int_{\Omega} f_1 \phi_i dxdy + \int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} \phi_i \ dxdy \\ &+ \int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} \phi_i \ dxdy + \sum_{j=1}^{N_b} u_{1j}^{m} \left(\frac{1}{\Delta t} \int_{\Omega} \phi_j \phi_i \ dxdy \right), \end{split}$$

Continued formulation:

$$\begin{split} &\sum_{j=1}^{N_{b}} u_{1j}^{m+1,(l)} \left(\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_{j} \phi_{i} \ dxdy \right) \\ &+ \sum_{j=1}^{N_{b}} u_{2j}^{m+1,(l)} \left(\frac{1}{\triangle t} \int_{\Omega} \phi_{j} \phi_{i} \ dxdy + 2 \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} \ dxdy \right. \\ &+ \int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} \ dxdy + \int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial y} \phi_{j} \phi_{i} \ dxdy + \int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial \phi_{j}}{\partial x} \phi_{i} \ dxdy \right. \\ &+ \int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial \phi_{j}}{\partial y} \phi_{i} \ dxdy \right) + \sum_{j=1}^{N_{bp}} p_{j}^{m+1,(l)} \left(- \int_{\Omega} \psi_{j} \frac{\partial \phi_{i}}{\partial y} \ dxdy \right) \\ &= \int_{\Omega} f_{2} \phi_{i} dxdy + \int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_{i} \ dxdy + \sum_{j=1}^{N_{b}} u_{2j}^{m} \left(\frac{1}{\triangle t} \int_{\Omega} \phi_{j} \phi_{i} \ dxdy \right), \end{split}$$

Continued formulation:

$$\begin{split} &\sum_{j=1}^{N_b} u_{1j}^{m+1,(I)} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial x} \psi_i \ dx dy \right) \\ &+ \sum_{j=1}^{N_b} u_{2j}^{m+1,(I)} \left(-\int_{\Omega} \frac{\partial \phi_j}{\partial y} \psi_i \ dx dy \right) + \sum_{j=1}^{N_{bp}} p_j^{m+1,(I)} * 0 \\ &0 \end{split}$$

Define

$$A_{1} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{2} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{3} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial x} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i,j=1}^{N_{b}}, \quad A_{4} = \left[\int_{\Omega} \nu \frac{\partial \phi_{j}}{\partial y} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i,j=1}^{N_{b}},$$

$$A_{5} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial x} dx dy \right]_{i=1,j=1}^{N_{b},N_{bp}}, \quad A_{6} = \left[\int_{\Omega} -\psi_{j} \frac{\partial \phi_{i}}{\partial y} dx dy \right]_{i=1,j=1}^{N_{b},N_{bp}},$$

$$A_{7} = \left[\int_{\Omega} -\frac{\partial \phi_{j}}{\partial x} \psi_{i} dx dy \right]_{i=1,j=1}^{N_{bp},N_{b}}, \quad A_{8} = \left[\int_{\Omega} -\frac{\partial \phi_{j}}{\partial y} \psi_{i} dx dy \right]_{i=1,j=1}^{N_{bp},N_{b}}.$$

• Define a zero matrix $\mathbb{O}_1 = [0]_{i=1,j=1}^{N_{bp},N_{bp}}$ whose size is $N_{bp} \times N_{bp}$. Then

$$A = \left(\begin{array}{ccc} 2A_1 + A_2 & A_3 & A_5 \\ A_4 & 2A_2 + A_1 & A_6 \\ A_7 & A_8 & \mathbb{O}_1 \end{array} \right)$$

- Each matrix above can be obtained by Algorithm I-3 in Chapter 3.
- It is not difficult to verify (an independent study project topic) that

$$A_4 = A_3^t$$
, $A_7 = A_5^t$, $A_8 = A_6^t$.

• Hence the matrix A is actually symmetric:

$$A = \left(egin{array}{cccc} 2A_1 + A_2 & A_3 & A_5 \ A_3^t & 2A_2 + A_1 & A_6 \ A_5^t & A_6^t & \mathbb{O}_1 \end{array}
ight)$$

Another format of full discretization

Define the basic mass matrix

$$M_e = [m_{ij}]_{i,j=1}^{N_b} = \left[\int_{\Omega} \phi_j \phi_i \, dx dy\right]_{i,j=1}^{N_b}.$$

- The mass matrix M_e can be obtained by Algorithm I-3 in Chapter 3, with r = s = p = q = 0 and c = 1.
- Define zero matrices $\mathbb{O}_2 = [0]_{i=1,j=1}^{N_b,N_{bp}}$ and $\mathbb{O}_3 = [0]_{i=1,j=1}^{N_b,N_b}$. Then define the block mass matrix

$$M = \left(\begin{array}{ccc} M_e & \mathbb{O}_3 & \mathbb{O}_2 \\ \mathbb{O}_3 & M_e & \mathbb{O}_2 \\ \mathbb{O}_2^t & \mathbb{O}_2^t & \mathbb{O}_1 \end{array}\right)$$

Define

$$AN_{1} = \left[\int_{\Omega} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} \phi_{j} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}}, \quad AN_{2} = \left[\int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial \phi_{j}}{\partial x} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}},$$

$$AN_{3} = \left[\int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial \phi_{j}}{\partial y} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}}, \quad AN_{4} = \left[\int_{\Omega} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} \phi_{j} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}},$$

$$AN_{5} = \left[\int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_{j} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}}, \quad AN_{6} = \left[\int_{\Omega} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial y} \phi_{j} \phi_{i} \, dxdy \right]_{i,j=1}^{N_{b}}$$

Then

$$AN = \begin{pmatrix} AN_1 + AN_2 + AN_3 & AN_4 & \mathbb{O}_2 \\ AN_5 & AN_6 + AN_2 + AN_3 & \mathbb{O}_2 \\ \mathbb{O}_2^t & \mathbb{O}_2^t & \mathbb{O}_1 \end{pmatrix}$$

• Each matrix above can be obtained by Algorithm VIII in Chapter 8.

Define the load vector

$$ec{b} = \left(egin{array}{c} ec{b}_1 \ ec{b}_2 \ ec{0} \end{array}
ight)$$

where

$$ec{b}_1 = \left[\int_{\Omega} f_1 \phi_i dx dy
ight]_{i=1}^{N_b}, \quad ec{b}_2 = \left[\int_{\Omega} f_2 \phi_i dx dy
ight]_{i=1}^{N_b}.$$

Here the size of the zero vector is $N_{bp} \times 1$. That is, $\vec{0} = [0]_{i=1}^{N_{bp}}$.

• Each of \vec{b}_1 and \vec{b}_2 can be obtained by Algorithm II-3 in Chapter 3.

Define the vector

$$\overrightarrow{bN} = \left(\begin{array}{c} \overrightarrow{bN}_1 + \overrightarrow{bN}_2 \\ \overrightarrow{bN}_3 + \overrightarrow{bN}_4 \\ \overrightarrow{0} \end{array}\right)$$

where
$$\vec{0} = [0]_{i-1}^{N_{bp}}$$
 and

$$\overrightarrow{bN}_{1} = \left[\int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial x} \phi_{i} \ dxdy \right]_{i=1}^{N_{b}},$$

$$\overrightarrow{bN}_{2} = \left[\int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial u_{1h}^{m+1,(l-1)}}{\partial y} \phi_{i} \ dxdy \right]_{i=1}^{N_{b}},$$

$$\overrightarrow{bN}_{3} = \left[\int_{\Omega} u_{1h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial x} \phi_{i} \ dxdy \right]_{i=1}^{N_{b}},$$

$$\overrightarrow{bN}_{4} = \left[\int_{\Omega} u_{2h}^{m+1,(l-1)} \frac{\partial u_{2h}^{m+1,(l-1)}}{\partial y} \phi_{i} \ dxdy \right]_{i=1}^{N_{b}},$$

- Each vector above can be obtained by Algorithm IX in Chapter 8.
- Define the known vector from the previous time iteration step:

$$\overrightarrow{X}^m = \begin{pmatrix} \overrightarrow{X}_1^m \\ \overrightarrow{X}_2^m \\ \overrightarrow{X}_3^m \end{pmatrix}$$

where

$$\begin{split} \vec{X}_1^m &= \begin{bmatrix} u_{1j}^m \end{bmatrix}_{j=1}^{N_b}, \\ \vec{X}_2^m &= \begin{bmatrix} u_{2j}^m \end{bmatrix}_{j=1}^{N_b}, \\ \vec{X}_3^m &= \begin{bmatrix} p_j^m \end{bmatrix}_{i=1}^{N_{bp}}. \end{split}$$

Define the unknown vector

$$ec{X}^{m+1,(I)} = \left(egin{array}{c} ec{X}_1^{m+1,(I)} \ ec{X}_2^{m+1,(I)} \ ec{X}_3^{m+1,(I)} \end{array}
ight)$$

where

$$\begin{split} \vec{X}_1^{m+1,(I)} &= \left[u_{1j}^{m+1,(I)} \right]_{j=1}^{N_b}, \\ \vec{X}_2^{m+1,(I)} &= \left[u_{2j}^{m+1,(I)} \right]_{j=1}^{N_b}, \\ \vec{X}_3^{m+1,(I)} &= \left[p_j^{m+1,(I)} \right]_{j=1}^{N_{bp}}. \end{split}$$

Define

$$A^{m+1,(l)} = \frac{M}{\triangle t} + A + AN, \ \vec{b}^{m+1,(l)} = \vec{b} + \frac{M}{\triangle t} \vec{X}^m + \overrightarrow{bN}.$$

• For step I ($I=1,2,\cdots,L$) of the Newton's iteration at the $(m+1)^{th}$ step of the time iteration, we obtain the linear algebraic system

$$A^{m+1,(I)}\vec{X}^{m+1,(I)} = \vec{b}^{m+1,(I)}$$

• Let X^{m+1} be the final $\vec{X}^{m+1,(I)}$ from the above Newton's iteration at the $(m+1)^{th}$ step of the time iteration.

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- Mewton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

Assembly of a time-independent matrix

Recall Algorithm I-3 from Chapter 3:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

```
FOR \ n=1,\cdots,N:
FOR \ \alpha=1,\cdots,N_{lb}:
FOR \ \beta=1,\cdots,N_{lb}:
Compute \ r=\int_{E_n} c \frac{\partial^{r+s}\psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p \partial y^q} \ dxdy;
Add \ r \ to \ A(T_b(\beta,n),T_b(\alpha,n)).
END
END
END
```

Assembly of the time-independent stiffness matrix

- Call Algorithm I-3 with r=1, s=0, p=1, q=0, $c=\nu$, basis type of ${\bf u}$ for trial function, and basis type of ${\bf u}$ for test function, to obtain A_1 .
- Call Algorithm I-3 with r = 0, s = 1, p = 0, q = 1, c = ν, basis type of u for trial function, and basis type of u for test function, to obtain A₂.
- Call Algorithm I-3 with r = 1, s = 0, p = 0, q = 1, c = ν, basis type of u for trial function, and basis type of u for test function, to obtain A₃.
- Call Algorithm I-3 with r = 0, s = 0, p = 1, q = 0, c = -1, basis type of p for trial function, and basis type of p for test function, to obtain A_5 .
- Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 1, c = -1, basis type of p for trial function, and basis type of p for test function, to obtain A_6 .
- Generate a zero matrix $\mathbb O$ whose size is $N_{bp} \times N_{bp}$.
- Then the stiffness matrix $A = [A_1 + 2A_2 \ A_3 \ A_5; A_5^t \ 2A_2 + A_1 \ A_6; A_5^t \ A_6^t \ \mathbb{O}].$

Assembly of the mass matrix

- Call Algorithm I-3 with r = 0, s = 0, p = 0, q = 0, c = 1, basis type of **u** for trial function, and basis type of **u** for test function, to obtain the basic mass matrix M_e .
- Generate three zero matrices \mathbb{O}_1 , \mathbb{O}_2 , and \mathbb{O}_3 whose sizes are $N_{bp} \times N_{bp}$, $N_b \times N_{bp}$, and $N_b \times N_b$, respectively.
- Then the block mass matrix $M = [M_e \ \mathbb{O}_3 \ \mathbb{O}_2; \mathbb{O}_3 \ M_e \ \mathbb{O}_2; \mathbb{O}_2^t \ \mathbb{O}_2^t \ \mathbb{O}_1].$

Assembly of a time-independent vector

Recall Algorithm II-3 from Chapter 3:

- Initialize the matrix: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n=1,\cdots,N:

FOR \beta=1,\cdots,N_{lb}:

Compute r=\int_{E_n}f\frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p\partial y^q}\,dxdy;

b(T_b(\beta,n),1)=b(T_b(\beta,n),1)+r;

END

END
```

Assembly of a time-dependent vector

Recall Algorithm II-5 from Chapter 4:

- Specify a value for the time t based on the input time;
- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n=1,\cdots,N:

FOR \beta=1,\cdots,N_{lb}:

Compute r=\int_{E_n}f(t)\frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p\partial y^q}\;dxdy;

b(T_b(\beta,n),1)=b(T_b(\beta,n),1)+r;

END
```

Assembly of the load vector

- Call Algorithm II-5 with p = q = 0 and $f = f_1$ to obtain $b_1(t)$.
- Call Algorithm II-5 with p = q = 0 and $f = f_2$ to obtain $b_2(t)$.
- Define a zero column vector $\vec{0}$ whose size is $N_{bp} \times 1$.
- Then the load vector $\vec{b} = [b_1(t); b_2(t); \vec{0}].$
- If f_1 and f_2 do not depend on t, then this part is exactly the same as the assembly of the load vector with Algorithm II-3 in Chapter 7.

Assembly of a matrix for an integral with a finite element coefficient function

Recall Algorithm VIII from Chapter 8:

- Initialize the matrix: $A = sparse(N_b, N_b)$;
- Compute the integrals and assemble them into A:

```
\begin{split} \textit{FOR } & n = 1, \cdots, N: \\ & \textit{FOR } \alpha = 1, \cdots, N_{lb}: \\ & \textit{FOR } \beta = 1, \cdots, N_{lb}: \\ & \text{Compute } r = \int_{E_n} \frac{\partial^{d+e} c_h}{\partial x^d \partial y^e} \frac{\partial^{r+s} \psi_{n\alpha}}{\partial x^r \partial y^s} \frac{\partial^{p+q} \psi_{n\beta}}{\partial x^p \partial y^q} \ \textit{dxdy}; \\ & \text{Add } r \ \textit{to} \ \textit{A}(\textit{T}_b(\beta, \textit{n}), \textit{T}_b(\alpha, \textit{n})). \\ & \textit{END} \\ & \textit{END} \\ & \textit{END} \end{split}
```

Assembly of a matrix for an integral with a finite element coefficient function

- Call Algorithm VIII with d=1, e=0, r=0, s=0, p=0, q=0, $c_h=u_{1h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_1 .
- Call Algorithm VIII with d = 0, e = 0, r = 1, s = 0, p = 0, q = 0, $c_h = u_{1h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_2 .
- Call Algorithm VIII with d = 0, e = 0, r = 0, s = 1, p = 0, q = 0, $c_h = u_{2h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_3 .
- Call Algorithm VIII with d = 0, e = 1, r = 0, s = 0, p = 0, q = 0, $c_h = u_{1h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_4 .

Assembly of a matrix for an integral with a finite element coefficient function

- Call Algorithm VIII with d = 1, e = 0, r = 0, s = 0, p = 0, q = 0, $c_h = u_{2h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_5 .
- Call Algorithm VIII with d = 0, e = 1, r = 0, s = 0, p = 0, q = 0, $c_h = u_{2h}^{(l-1)}$, basis type of **u** for both trial and test functions, to obtain AN_6 .
- Generate a zero matrix $\mathbb{O}_1 = [0]_{i,j=1}^{N_{bp}}$, $\mathbb{O}_2 = [0]_{i=1,j=1}^{N_b,N_{bp}}$ and $\mathbb{O}_3 = [0]_{i=1,j=1}^{N_b,N_{bp}}$.
- Then the stiffness matrix

$$A = [AN_1 + AN_2 + AN_3 \ AN_4 \ \mathbb{O}_2; AN_5 \ AN_6 + AN_2 + AN_3 \ \mathbb{O}_3; \mathbb{O}_2^t \ \mathbb{O}_3^t \ \mathbb{O}_1].$$

Assembly of the vector for an integral with two finite element coefficient functions

Recall Algorithm IX from Chapter 8:

- Initialize the vector: $b = sparse(N_b, 1)$;
- Compute the integrals and assemble them into b:

```
FOR n=1,\cdots,N:

FOR \beta=1,\cdots,N_{lb}:

Compute r=\int_{E_n}\frac{\partial^{d+e}f_{1h}}{\partial x^d\partial y^e}\frac{\partial^{r+s}f_{2h}}{\partial x^r\partial y^s}\frac{\partial^{p+q}\psi_{n\beta}}{\partial x^p\partial y^q}\ dxdy;

b(T_b(\beta,n),1)=b(T_b(\beta,n),1)+r;

END
```

Assembly of the vector for an integral with two finite element coefficient functions

- Call Algorithm IX with d = 0, e = 0, r = 1, s = 0, p = 0, q = 0 and $f_{h1} = u_{1h}^{(l-1)}$, $f_{h2} = u_{1h}^{(l-1)}$ to obtain bN_1 .
- Call Algorithm IX with d = 0, e = 0, r = 0, s = 1, p = 0, q = 0 and $f_{h1} = u_{2h}^{(l-1)}$, $f_{h2} = u_{1h}^{(l-1)}$ to obtain bN_2 .
- Call Algorithm IX with d = 0, e = 0, r = 1, s = 0, p = 0, q = 0 and $f_{h1} = u_{1h}^{(l-1)}$, $f_{h2} = u_{2h}^{(l-1)}$ to obtain bN_3 .
- Call Algorithm IX with d = 0, e = 0, r = 0, s = 1, p = 0, q = 0 and $f_{h1} = u_{2h}^{(l-1)}$, $f_{h2} = u_{2h}^{(l-1)}$ to obtain bN_4 .
- Define a zero column vector $\vec{0}$ whose size is $N_{bp} \times 1$
- Then the load vector $\overrightarrow{bN} = [bN_1 + bN2; bN_3 + bN_4; \vec{0}].$

Time-dependent Dirichlet boundary condition

Recall Algorithm III-4 from Chapter 9:

- Specify a value for the time t based on the input time;
- Deal with the Dirichlet boundary conditions:

```
FOR k = 1, \dots, nbn:
     If boundarynodes(1, k) shows Dirichlet condition, then
           i = boundary nodes(2, k);
          \tilde{A}(i,:)=0:
           \tilde{A}(i,i)=1:
           b(i) = g_1(P_b(:,i),t);
           \tilde{A}(N_b + i, :) = 0;
          \tilde{A}(N_b+i,N_b+i)=1;
           \tilde{b}(N_b + i) = g_2(P_b(:, i), t);
     ENDIF
FND
```

Main pseudo code

Algorithm B:

- Generate the mesh information matrices P and T.
- Assemble the mass matrix M and stiffness matrix A by using Algorithm I-3.
- Generate the initial vector \vec{X}^0 .
- Iterate in time: $FOR \ m = 0, \dots, M_m 1$
- $t_{m+1} = (m+1)\triangle t$;
- Assemble the load vector \vec{b} by using Algorithm II-5.
- Newton iteration: $FOR \ I = 1, 2, \dots, L$
- Assemble the matrix AN by using Algorithm VIII.
- Assemble the vector \overrightarrow{bN} by using Algorithm IX.
- $A^{m+1,(l)} = \frac{M}{\triangle t} + A + AN$ and $\vec{b}^{m+1,(l)} = \vec{b} + \frac{M}{\triangle t} \vec{X}^m + \overrightarrow{bN}$
- Treat Dirichlet boundary for $A^{m+1,(l)}$ and $\vec{b}^{m+1,(l)}$ by Algorithm III-4.
- Solve $A^{m+1,(l)}\vec{X}^{m+1,(l)} = \vec{b}^{m+1,(l)}$ for \vec{X} .
- Let X^{m+1} be the final $\vec{X}^{m+1,(l)}$ from the above Newton's iteration. END

Numerical example

• Example 1: On the domain $\Omega = [0,1] \times [-0.25,0]$, consider the time-dependent Navier-Stokes equation

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} \quad \text{in } \Omega \times [0, 1],$$

$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega \times [0, 1].$$

Numerical example

Independent study topic:

• (1) Following the traditional way, which was used to set up the numerical examples in the previous chapters, determine the source term \mathbf{f} , initial condition, Dirichlet boundary conditions, and fixed value of p at (0,0) such that the analytic solutions of this problem are

$$u_1 = (x^2y^2 + e^{-y})\cos(2\pi t),$$

$$u_2 = \left[-\frac{2}{3}xy^3 + 2 - \pi\sin(\pi x) \right]\cos(2\pi t),$$

$$p = -[2 - \pi\sin(\pi x)]\cos(2\pi y)\cos(2\pi t).$$

• (2)Choose h=1/8, 1/16, 1/32 and $\triangle t=8h^3$. Use the Taylor-Hood finite elements with backward Euler scheme to solve this equation and provide the numerical errors of $\bf u$ and p in L^2 , L^∞ , and H^1 norms.

Outline

- Weak formulation
- 2 Semi-discretization
- Full discretization
- 4 Newton's iteration
- Matrix formulation
- 6 FE method
- More Discussion

- The treatment of the stress/Robin boundary conditions is similar to that of Chapter 7.
- If the functions in the stress/Robin boundary conditions are independent of time, then the same subroutines from Chapter 7 can be used before the time iteration starts.
- If the functions in the stress/Robin boundary conditions depend on time, then the same algorithms as those in Chapter 7 can be used at each time iteration step. But the time needs to be specified in these algorithms.

Consider

$$\begin{aligned} \mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \mathbb{T}(\mathbf{u}, p) &= \mathbf{f} & \text{in } \Omega \times [0, T], \\ \nabla \cdot \mathbf{u} &= 0 & \text{in } \Omega \times [0, T], \\ \mathbb{T}(\mathbf{u}, p)\mathbf{n} &= \mathbf{p} & \text{on } \Gamma_S \times [0, T], \\ \mathbb{T}(\mathbf{u}, p)\mathbf{n} + r\mathbf{u} &= \mathbf{q} & \text{on } \Gamma_R \times [0, T], \\ \mathbf{u} &= \mathbf{g} & \text{on } \Gamma_D \times [0, T], \\ \mathbf{u} &= \mathbf{u}_0, & \text{at } t = 0 \text{ and in } \Omega. \end{aligned}$$

where Γ_S , $\Gamma_R \subset \partial \Omega$ and $\Gamma_D = \partial \Omega/(\Gamma_S \cup \Gamma_R)$.

Recall

$$\begin{split} &\int_{\Omega} \mathbf{u}_t \cdot \mathbf{v} \ dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \ dxdy + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy \\ &- \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy - \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p) \mathbf{n}) \cdot \mathbf{v} \ ds \ = \ \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy, \\ &- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0. \end{split}$$

• Since the solution on $\Gamma_D = \partial \Omega/(\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v} = 0$ on $\partial \Omega/(\Gamma_S \cup \Gamma_R)$.

• Hence, similar to the treatment of the mixed boundary condition in Chapter 7, the weak formulation is to find $\mathbf{u} \in H^1(0,T;[H^1(\Omega)]^2)$ and $p \in L^2(0,T;L^2(\Omega))$ such that

$$\begin{split} & \int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \ dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \ dxdy \\ & + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy + \int_{\Gamma_{R}} r\mathbf{u} \cdot \mathbf{v} \ ds \\ & = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy + \int_{\Gamma_{R}} \mathbf{q} \cdot \mathbf{v} \ ds + \int_{\Gamma_{S}} \mathbf{p} \cdot \mathbf{v} \ ds, \\ & - \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0. \end{split}$$

for any $\mathbf{v} \in [H^1_{0D}(\Omega)]^2$ and $q \in L^2(\Omega)$ where $H^1_{0D}(\Omega) = \{ w \in H^1(\Omega) : w = 0 \text{ on } \Gamma_D \}.$

• Code? Combine all of the subroutines for Dirichlet/Stress/Robin boundary conditions.

Consider

$$\begin{aligned} &\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nabla \cdot \mathbb{T}(\mathbf{u}, p) = \mathbf{f} & \text{in } \Omega \times [0, T], \\ &\nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \times [0, T], \\ &\mathbf{n}^t \mathbb{T}(\mathbf{u}, p)\mathbf{n} = p_n, \tau^t \mathbb{T}(\mathbf{u}, p)\mathbf{n} = p_\tau & \text{on } \Gamma_S \times [0, T], \\ &\mathbf{n}^t \mathbb{T}(\mathbf{u}, p)\mathbf{n} + r\mathbf{n}^t \mathbf{u} = q_n, \tau^t \mathbb{T}(\mathbf{u}, p)\mathbf{n} + r\tau^t \mathbf{u} = q_\tau & \text{on } \Gamma_R \times [0, T], \\ &\mathbf{u} = \mathbf{g} & \text{on } \Gamma_D \times [0, T], \\ &\mathbf{u} = \mathbf{u}_0, & \text{at } t = 0 \text{ and in } \Omega. \end{aligned}$$

where Γ_S , $\Gamma_R \subset \partial\Omega$, $\Gamma_D = \partial\Omega/(\Gamma_S \cup \Gamma_R)$, $\mathbf{n} = (n_1, n_2)^t$ is the unit outer normal vector of $\partial\Omega$, and $\tau = (\tau_1, \tau_2)^t$ is the corresponding unit tangential vector of $\partial\Omega$.

Recall

$$\begin{split} &\int_{\Omega} \mathbf{u}_t \cdot \mathbf{v} \ dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \ dxdy + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \ dxdy \\ &- \int_{\Omega} p(\nabla \cdot \mathbf{v}) \ dxdy - \int_{\partial \Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \ ds \ = \ \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \ dxdy, \\ &- \int_{\Omega} (\nabla \cdot \mathbf{u}) q \ dxdy = 0. \end{split}$$

• Since the solution on $\Gamma_D = \partial \Omega/(\Gamma_S \cup \Gamma_R)$ is given by $\mathbf{u} = \mathbf{g}$, then we can choose the test function $\mathbf{v}(x,y)$ such that $\mathbf{v} = 0$ on $\partial \Omega/(\Gamma_S \cup \Gamma_R)$.

 Similar to the derivation of mixed boundary conditions in normal/tangential directions in Chapter 7, we obtain

$$\int_{\partial\Omega} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \int_{\Gamma_{S}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds + \int_{\Gamma_{R}} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$+ \int_{\partial\Omega/(\Gamma_{S} \cup \Gamma_{R})} (\mathbb{T}(\mathbf{u}, p)\mathbf{n}) \cdot \mathbf{v} \, ds$$

$$= \left[\int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$+ \left[\int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}) \, ds \right]$$

$$- \left[\int_{\Gamma_{R}} (r\mathbf{n}^{t}\mathbf{u})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} (r\tau^{t}\mathbf{u})(\tau^{t}\mathbf{v}) \, ds \right],$$

• Hence, similar to the treatment of the mixed boundary conditions in normal/tangential directions in Chapter 7, the weak formulation is to find $\mathbf{u} \in H^1(0, T; [H^1(\Omega)]^2)$ and $p \in L^2(0, T; L^2(\Omega))$ such that

$$\begin{split} & \int_{\Omega} \mathbf{u}_{t} \cdot \mathbf{v} \, dxdy + \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \mathbf{v} \, dxdy + \int_{\Omega} 2\nu \mathbb{D}(\mathbf{u}) : \mathbb{D}(\mathbf{v}) \, dxdy \\ & - \int_{\Omega} p(\nabla \cdot \mathbf{v}) \, dxdy + \int_{\Gamma_{R}} (r\mathbf{n}^{t}\mathbf{u})(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} (r\tau^{t}\mathbf{u})(\tau^{t}\mathbf{v}) \, ds \\ & = \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \, dxdy + \int_{\Gamma_{R}} q_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{R}} q_{\tau}(\tau^{t}\mathbf{v}) \, ds \\ & + \int_{\Gamma_{S}} p_{n}(\mathbf{n}^{t}\mathbf{v}) \, ds + \int_{\Gamma_{S}} p_{\tau}(\tau^{t}\mathbf{v}) \, ds, \\ & - \int_{\Omega} (\nabla \cdot \mathbf{u})q \, dxdy = 0, \end{split}$$

for any $\mathbf{v} \in [H^1_{0D}(\Omega)]^2$ and $q \in L^2(\Omega)$.

 Code? Combine all of the subroutines for Dirichlet/Stress/Robin boundary conditions.