Introduction and Implementation for Finite
Element Methods

Chapter 10: Finite elements for 2D unsteady Navier-Stokes
equations

Xiaoming He
Department of Mathematics & Statistics
Missouri University of Science & Technology

7

Outline

@ Weak formulation

© Semi-discretization
© Full discretization

@ Newton's iteration
© Matrix formulation
© FE method

@ More Discussion

Weak formulation

Outline

@ Weak formulation

Weak formulation
Target problem
@ Consider the 2D unsteady unsteady Navier-Stokes equation
equation
u; + —V - T(u,p)=f, in Qx|0, T],
V-ou=0 in Qx[0, T,
u=g, on JdNx|0, T],
u=ug, p=py, att=20and in Q.
where Q is a 2D domain, [0, T] is the time interval, f(x,y, t)
is a given function on Qx[0, T], g(x, y, t) is a given function
on 9Qx[0, T], up(x, y) and po(x,y) are given functions on Q
at t =0, u(x, y, t) and p(x,y,t) are the unknown functions,
and
u(x,y, t) = (u, w)", f(x,y,t) = (fi, H)",
g(x,y,t) = (g1, &2)"5 uo(x,y) = (10, u20)".

Weak formulation

Target problem

@ The nonlinear advection is defined as

@ The stress tensor T(u, p) is defined as
T(u, p) = 2vD(u) — pI

where v is the viscosity and the deformation tensor

D(u) = %(Vu +(Vu)b).

Weak formulation

Target problem

@ In more details, the deformation tensor can be written as

ouy 8u1 + 8[]2
]D)(u) _ ox 2
(8u1 + 8uz) %L)l/z

@ Hence the stress tensor can be written as

2,/@ —p v (Bul + 8u2>

T(U,P) = (Bul + 8u2> 21/%”2 —p
y

6/77

Weak formulation
Weak formulation

o First, take the inner product with a vector function
v(x,y) = (v1, v2)! on both sides of the unsteady
Navier-Stokes equation:

u; + -V -T(u,p)=f inQ
= U;-V+ -V -T(u,p)-v=Ff-v inQ

= /ut-v dxdy +
Q

—/(V‘T(u,p))-v dxdy:/f-v dxdy
Q Q

Weak formulation

Weak formulation

@ Second, multiply the divergence free equation by a function
q(x, y):

V-u=0 = (V-u)g=0
= /(V-u)q dxdy = 0.
Q

@ u(x,y,t) and p(x,y,t) are called trail functions and v(x, y)
and g(x, y) are called test functions.

Weak formulation
Weak formulation

@ Using integration by parts in multi-dimension:

/(V-']I‘)-v dxdy:/ (Tn) -v ds—/']I‘:Vv dxdy,
Q o Q

t

where n = (n1, n2)" is the unit outer normal vector of 92, we

obtain

/ T(u, p) : Vv dxdy —/ (T(u,p)n)-v ds = / f-v dxdy.
Q o Q

Here,

ail1 ai2 b11 b12
A:B = :
(a1 ax) < bo1 b2 >

= ai1bi1 + azb1o + a21 by + axaboo.

Weak formulation
Weak formulation

@ Using the above definition for A : B, it is not difficult to verify
(an independent study project topic) that

T(u,p): Vv = (2vD(u) — pl): Vv
= 2uD(u) : D(v) — p(V - v).

@ Hence we obtain
/ u; - v dxdy + +/ 2vD(u) : D(v) dxdy
Q Q

—/ p(V -v) dxdy—/ (T(u,p)n)-v ds = /f-v dxdy,
Q o0 Q

—/(V -u)q dxdy = 0.
Q

Here we multiply the second equation by —1 in order to keep

the matrix formulation symmetric later.

10/77

Weak formulation
Weak formulation

@ Since the solution on the domain boundary 9f2 are given by
u(x,y, t) = g(x,y, t), then we can choose the test function
v(x,y) such that v =0 on 0.

@ Hence

/ u; - v dxdy + —i—/ 2vD(u) : D(v) dxdy
Q Q
—/p(V-v) dxdy:/f-v dxdy,

Q Q

/(V-u)q dxdy = 0.
Q

o Define [H}(Q)]2 = H1(Q) x H1(Q) and
HYO, T; [HY(QPP) = {v(.1), g‘;(»t) e [H'(Q), vt e[0, T},
L2(0, T; 1%(Q) = {q(-t) e L?(Q), Vte [0, T]}.

11 /77

Weak formulation
Weak formulation

@ Weak formulation in the vector format: find
u € HY(0, T; [HY(Q)]?) and p € L?(0, T; L%(2)) such that

/ u; - v dxdy +

Q

—i—/ 2vD(u) : D(v) dxdy — / p(V - v) dxdy
Q Q

= / f-v dxdy,
Q

—/(V -u)q dxdy =0,
Q

for any v € [H}(Q)]? and q € L2(Q).

12 /77

Weak formulation
Weak formulation

@ Define

c(w,u,v) = /Q(W -V)u - v dxdy,

a(u,v) = /921/ID)(u) :D(v) dxdy,
blu,) = — [(V- u)q ddy.

(f,v) = /Qf-v dxdy.
e Weak formulation: find u € HY(0, T; [H'(2)]?) and
p € L2(0, T; L2()) such that
(ug,v) + c(u,u,v) 4+ a(u,v) + b(v,p) = (f,v),
b(u,q) = 0,
for any v € [H3(Q)]? and g € L3(Q).

13 /77

Weak formulation
Weak formulation

@ In more details,

D(u) : D(v)
- % L (aU1 i au2>
- % (Bul n aU2) %2
% % (am i aVQ>
(am n 8V2) %2

aul 8V1 8U1 8u2 8v1 aVQ
Ox Ox & <ay +ax> (aﬁ 8x>

1 8u1 6U2 8V1 8vz 6”2 8V2
2 <ay+ax> (ay * ax> oy oy

14 /77

Weak formulation
Weak formulation

@ Hence
D(u) : D(v)
_ dudv | dudv | 10udvn
~ Ox Ox 0Oy dy 20y Oy
10u 0vy | 10u; 0wy | 10u; dvp
20y Ox 20x dy 2 0x Ox’
@ Then

/ 2vD(u) : D(v) dxdy
Q

N 8u1 8V1 8U2 8V2 aul 8v1
o /QV<2 Ox Ox +28y dy + Oy Oy
Bul 8V2 8U2 6v1 OUQ aVQ
Gy ox T ox oy D o) B

15 /77

Weak formulation
Weak formulation

@ We also have

Ju ou
/Qut-v dxdy :/Qatlvl dxdy+/Qat2V2 dxdy,

. 8v1 8V2
/Qp(V-v) dxdy—/Q <p . +p8y> dxdy,

/f-v dxdy = /(flvl—i—fgvz) dxdy,
Q Q

- 8u1 8U2
/Q(V -u)q dxdy = /Q <8Xq + 8yq> dxdy.

16 /77

Weak formulation

Weak formulation

@ Weak formulation in the scalar format: find u; € H*(Q),
uy € HY(Q), and p € L?(Q) such that

Ju du
/Qa—tlvl dxdy—i—/ﬂa—:vz dxdy

+

3U1 6v1 8U2 3V2 8u1 (9V1
g LT o2l | TACA
+/91/< Ox 0Ox + dy dy Oy Oy
Ou 0v, | 0wy Ovi | Ot Ov,
Jdy Ox ox Oy Ox Ox

0
—/ pl + p% dxdy = /(f1v1 + fhv,) dxdy.
Q 8X 6y Q

8u1 8U2
/Q < Ox 9 dy q) xdy =0

for any vi € H}(Q), vo € H}(Q), and g € L?(Q).

) dxdy

17 /77

Semi-discretization

Outline

© Semi-discretization

18 /77

Semi-discretization
Galerkin formulation

e Consider a finite element space U, C H(Q) for the velocity
and a finite element space W}, C L2(Q) for the pressure.
Define Upg to be the space which consists of the functions of
Uy, with value 0 on the Dirichlet boundary.

@ Then the Galerkin formulation is to find u, € H(0, T; [Up]?)
and p € L?(0, T; W,) such that

(uht7 V) + + a(“h? Vh) + b(vh7 ph) = (f7 Vh)a
b(Uh, qh) = 07

for any vy, € [Upo]? and gn € W,

19/77

Semi-discretization
Galerkin formulation

@ For an easier implementation, we use the following Galerkin
formulation (without considering the Dirichlet boundary
condition, which will be handled later): find
up € HY(0, T;[Up)?) and p € L%(0, T; W},) such that

(uhm V) + + a(“h? Vh) + b(Vh, ph) = (f7 Vh)7
b(Uh, qh) = 07

for any v, € [Uy]? and qp, € W,

20/77

Semi-discretization
Galerkin formulation

@ In more details of the vector format, the Galerkin formulation
(without considering the Dirichlet boundary condition, which
will be handled later) is to find u, € HY(0, T; [Up]?) and
p € L2(0, T; W,) such that

/ up, - vy dxdy +

Q

—i—/ 2uD(up) : D(vp) dxdy — / pr(V - vp) dxdy
Q Q

= / f- v, dxdy,
Q

/(V - up)qp dxdy =0,
Q

for any v, € [Up]? and qp, € W,

21/77

Semi-discretization

Galerkin formulation

. N,
@ In our numerical example, U, = span{¢j}j:b1 and

N -
Wy = span{wj}j:b‘i are chosen to be the finite element spaces

with the quadratic global basis functions {¢; J’.V:bl and linear

global basis functions {¢J}JN:"‘{ which are defined in Chapter

2. They are called Taylor-Hood finite elements.
@ Why do we choose the pairs of finite elements in this way?

@ Stability of mixed finite elements: inf-sup condition.

. b(up, gn)
inf sup _
0#an€Wh 0-£u,c Uy, x Uy, HVUhHO HC/hHo

> B,

where 5 > 0 is a constant independent of mesh size h.

@ See other course materials and references for the theory and
more examples of stable mixed finite elements for unsteady
Navier-Stokes equation.

Semi-discretization

Galerkin formulation

@ In the scalar format, the Galerkin formulation is to find
up € Hl(O7 T; Uh), upp € HI(O, T: Uh), and Phn € L2(0, T; Wh) such
that

Ourp Oup
—_ dxd' —_— dxd
/Q ot Vih Xer/Q ot Vop axay

+

+/ U(zaulh Ovip 251!2/7 Ovo, Ouip Ovip
o Ox Ox dy Oy dy 9y
Ourp Ovo, — Oupp Ovai, Oy 8V2h) dxd
dy 0Ox ox Oy Ox 0Ox Y

ov ov:
—/ (Phalh + pn 2") dxdy = /(flVIh + favap) dxdy.
Q X dy Q

Ourp Ouzp B
—/Q(Ox gn + dy qh> dxdy = 0.

for any vip € Up, vop € Up, and gn € W,,.

23 /77

Full discretization

Outline

© Full discretization

24 /77

Full discretization

Full discretization

@ Assume that we have a uniform partition of [0, T] into M,
elements with mesh size At.

The mesh nodes are t,, = mAt, m=0,1,--- , Mp,.
Let ug and pg denote the given initial condition at tg.
Let u}’ and p;’ denote the numerical solution at t,.

For a simple illustration, we consider the full discretization
with backward Euler scheme (without considering the
Dirichlet boundary condition, which will be handled later): for
m=0,--- , M, —1, find uhm+1 € [Up)? and p,’f’“ € W, such
that
(uhmH —up
At
+b(Vh, piT+1) = (f(tm+l)7 Vh)7
b(utt, gn) =0,

7V) + + a(uherl’Vh)

25 /77

Full discretization

Full discretization

@ Thatis, form=0,--- ,M,, —1, find UTH € [Uh]2 and

p,',"+1 € W, such that

m+1 m
u, —u
—h " Th Ly, dxd
/Q N v, axdy +
+/ 2vD(uf™™) : D(vy) dxdy — / PV - vp) dxdy
Q Q
= / f(tmi1) - v dxdy,
Q
f/(V ~uf"™) gy dxdy =0,
Q

for any vj, € [Up]? and g € W,

26 /77

Full discretization

Full discretization

@ For m=0,---, My —1, find uf*', uZ™ € Uy and p™™ € W, such that
m+1 m m—+1 m
Uyp ~ — Uip Uy~ — Uzp
2 2Py, dxd —=h 2y, dxd!
/Q I 1h ly + /Q At 2h ly +

+/ V(28U1’7’+1 5‘V1h 8u§'},“ 8V2h Bu{’]fl % aul”},“ 8V2h
Q ox Ox dy Oy dy Oy dy Ox

m+1 m-+1
+8U2h ovip n 8U2h 6vzh) dxdy _/ (,D;T+1 Ovip + pl,;,,_H 8V2h) dXdy
Q

ox 0Oy ox 0Ox ox dy

= / A (tms1)van dxdy/ fo(tm+1)van dxdy,
Q Q

oufitt Qugtt
_ + dxdy =0
/Q(ax Oy an)dxdy ’

for any vip € Up, von € Uy, and qn € W,

Newton's iteration

Outline

@ Newton's iteration

28 /77

Newton's iteration

Newton's iteration

How to handle the nonlinear terms in the full discretization?

@ At each time iteration step of the full discretization, we have
a steady nonlinear problem, which is similar to to the steady
Navier-Stokes equation.

Newton's iteration at each time iteration step!

@ Given the initial condition u?, and pg at the initial time

29 /77

Newton's iteration

Newton's iteration at each time iteration step

At the (m + 1)™ step (m =0, --- , M, — 1) of the time iteration,
we consider the following Newton's iteration:
@ Initial guess: uhmH’(O) and pZ’H’(O). Usually they can be the

solutions u}” and p;" of the previous time iteration step.

@ Newton's iteration for full discretization: for [=1,2,--- L,
find uhm+1’(l) € Uy x Uy and p,’lnﬂ’(l) € Wy such that
(M) 4
+a(up M, vp) + b(wp, p)

= (F(tm+1), vh) ,
b(uhm+17(l)> qh) = Oa

for any vy € Uy x Uy and g, € W,

o Let uhmJ“:l be the final uhm+1’(/) from the above iteration.

30/77

Newton's iteration

Newton's iteration at each time iteration step

@ Initial guess: uhm % and pm+1 . Usually they can be the solutions u}]
and pp’ of the previous time iteration step.

@ Newton's iteration for full discretization in the vector format: for
I=1,2,---,L, find um+1 0 e Upr x Up and pm+1 0 e W, such that

m+1(l)_uhm

h

Zh TRy dxd
/Q At v ey

+/ 2uD(u) D(vy) dxdy — / pr (Y - vy) dxdy

:/f~vhdxdy ,
Q

- / (V- up D) gy dxdy =0,
Q

for any v, € Uy x Uy, and qh c W,.

m+1

@ Let u™ be the final u " from the above iteration.

31/77

Newton's iteration

Newton's iteration at each time iteration step

@ Initial guess: uf}fl’(o), ug;fl’(o), and p,TH’(O). Usually they

can be the solutions uf}, uj}, and p;” of the previous time
iteration step.

@ Newton's iteration for full discretization in the scalar format:

for =1,2,--- L, find uli™"" ¢ Uy, w0 € U, and
p,TH’(I) € W such that

32/77

Newton's iteration

Newton's iteration at each time iteration step

m+1 (1) m

/ 1h — Uip
Q At

m+1,(1) m

u. —u
Vip dxdy+/ uv% dxdy +
Q At

+/ 8Um+ Bvlh + 28Ug;7+1’(l) BVZh Buﬂ“’(’) 8V1h 8Uﬂ+1’(l) 8V2h

T 9x Ox dy dy dy dy dy Ox
m+1,(/ m+1,(/
Ouyy, ® Ovip | Ouyy v 8‘/2”) dxdy — / (pZ’H’(’) Ovin + pT‘*’l’(’) 76‘/2’7) dxdy
Ox dy Ix ox Q Ox dy

= [(vin + o) dhdy
Q

33/77

Newton's iteration

Newton's iteration at each time iteration step

@ Continued formulation:

Hum L) Hum 0
_/ ulh dh —+ u2h dh dXdy =0.
Q Ox dy

for any vy, € Up, vop € Up, and g, € W,

m+1 m+1 . m—+1,(/) m+1,(
@ Let uj}"" and uj,"" be the final u, and u,,

the above iteration.

N from

34 /77

Matrix formulation

Outline

© Matrix formulation

35/77

Matrix formulation

Matrix formulation

. 1,0 1, N
@ Since uinh+ (), g;,+ (), urh, Ug}, €Uy = 5Pa”{¢j}j=b1 and
m+1,(/) Ny
Py, , Py € Wy = span{wJ}J %, then
Nb Nb
m+1,(1) m+1 (N m
uyp, = bj, ufp = Z ”1j¢jv
j=1 J=1
Nb Nb
Uy, Uy ®j, Upp = Z U b
j:l j=1
Npp

1,(/ 1,(
m+) = Z pm+ ¢j7 ph Z ij¢j,
=1

m+1,(1) m+1() m m
for some coefficients uy; , Uy, , Uy}, ug;

(] —]_7. .. 7Nb)v and pj{n+1’(l), pjm, (J = 1,- e ,Nbp).

36/77

Matrix formulation

Matrix formulation

: . L/
@ If we can set up a linear algebraic system for uf}Jr o),

() . NORP
ug}+ D (j=1,---,Np), and pjf’7+ D G=1,--, Nyp),
then we can solve it to obtain the finite element solution

uT+1’(I) = (ui"hH’(l), u;"hﬂ’(l))t and p,TH’(I) at the step
I (I=1,2,---,L) of Newton's iteration.

@ For the first equation at the step / (/ =1,2,---,L) of
Newton's iteration, we choose vi, = (¢;,0)" (i=1,---, Np)
and vy = (0,¢;)" (i=1,---,Np). Thatis, in the first set of
test functions, we choose vip = ¢; (i =1,---,Np) and

vop = 0; in the second set of test functions, we choose
V1h =0 and Vo h :qb,- (i: 1,”' ,Nb).

@ For the second equation at the step / (/ =1,2,---,L) of
Newton's iteration, we choose g, = 9; (i =1, -+, Npp).

37/77

Matrix formulation

Matrix formulation

@ Set vy =(¢;,0)t, ie., vip=¢; and vop =0 (i = 1,---, Np), in the first
equation at the step / (/ =1,2,---, L) of Newton’s iteration. Then

/ Zu”’“ bi dxdy—i/ %u"’-d)- & dxdy
’ At P A

Np Np
AN mi1,(1)08; \ 00,
+2/ y u1'+1 99 | 0¢i d dy+/ v u1,+1 99 ¢ dxdy
Q = J Ox Ox Q = J dy | Oy

Np
m 6¢ 8¢l / m+1,(/ 8¢l
+1,(1) 99Pj +1,()
: dxdy — —— dxd!
+/QV <j_1 2 Ox) Oy Y Z ox Y

- / fisidxdly
Q

38/77

Matrix formulation

Matrix formulation

@ Set vy, =(0,0;)t, ie., vip=0and vop = ¢; (i =1,---,Np), in the first
equation of the Galerkin formulation at the step / (/ =1,2,--- ,L) of Newton's
iteration. Then

Ny
i (Z 5000 dsay — 1 [(3 ug)or day
Jj=1

m+1,(1) 09j Ob; m 8(;5 8¢>,
2 [B[S 020 gy

Np Npp
m+1,(1) OP; 3¢idd _/ mt1,(1) _3¢idd
+/Qu(j:1 i Ix) Ox e Q(; g %) Oy i

39/77

Matrix formulation

Matrix formulation

@ Set g, =1 (i=1,---, Npp) in the second equation of the
Galerkin formulation at the step / (/ =1,2,---,L) of
Newton's iteration. Then
Nb Nb
_/ uE+1 N a¢] w’ dXdy / ug+1 8¢J w’ dXdy =0.
o\ o o\ o

40 /77

Matrix formulation

Matrix formulation

@ Simplify the above three sets of equations, we obtain

b
m+1,(1) i e 6¢J BQS, 8¢J (9(;3,
j:lulj (At/§2¢1¢,dxdy+2 A ddy + | w5 dxdy
m+1 8451 a¢l
)+ Z VoL, by

N,,,,

Z m1,((/%&ii dxdy)

:/fqu,-dxdy
Q
Np 1
> (E [oo dxdy),
=1

41 /77

Matrix formulation

Matrix formulation

@ Continued formulation:

Np

o ([, 2808 4,)
Jj=1 </

m 0¢; 0¢i
+Z +1(/ At/¢1¢,dxdy+2 0¢; 0¢i dxdy

8 Oy
0¢; 0¢i
+/QV§ x dxdy

= / f¢idxdy
Q

42 /77

Matrix formulation
Matrix formulation

@ Continued formulation:

43 /77

Matrix formulation

Matrix formulation

@ Define
[[,09; 09 } [09, 0¢;]”"
A = =L dxd , A= = dxdy ,
! "ox ox i1 2 3y dy =1
[[0, 06 Ne D¢ O No
As = 0¢j i dxdy} . A= [¢/ ¢ dxdy] ,
" ox Jy i1 8y Ox P=1
a ; Nb,Nbp 8 ; Nb»Nbp
Ag = / 45 o dxdy] L Ag = { / e o dxdy} ,
i=1,j=1 i=1,j=1
r ¢ Nbpbe ¢ Nbp7Nb
A = / Xy, dxdy] g = { / o dxdy}
L/ Q i=1,j=1 Q i=1,j=1
@ Define a zero matrix Q; = [O]IN"’i’jV"” whose size is Npp X Npp. Then
2A1 + Ay Az As
A= Ay 2A + A1 Ae
A7 Asg (O

44/77

Matrix formulation

Matrix formulation

@ Each matrix above can be obtained by Algorithm I-3 in
Chapter 3.

e It is not difficult to verify (an independent study project topic)
that
Ay=AL A; = AL Ag = AL

@ Hence the matrix A is actually symmetric:

2A1 + Ay Az As
A= A:t,’ 2 + A1 Ag
AL AL o

45 /77

Matrix formulation

Another format of full discretization

@ Define the basic mass matrix

Np

Me = [my]e_; = { /Q Oibi dxdy]

ij=1
@ The mass matrix M, can be obtained by Algorithm I-3 in
Chapter 3, with r=s=p=g=0and c = 1.

. . Ny, N,
@ Define zero matrices O, = [O]i:bld.lz

Then define the block mass matrix

1 and O3 = [O]&iﬁ,{l’:l-

M. O3 O
M=| 03 M. O
0 0f 0,

46 /77

Matrix formulation

@ Define

ANy

AN3

ANs =

@ Then

9 m+1,(/—1) 1N
i dxdy |
dij=1
m 9 1"
2h+1 (1-1) ¢j ¢I dxdy ,
4i,j=1
9 m+1,(/—1) 1Ny
2h8x bj¢i dxdy)
dij=1

Matrix formulation

- - 8(Z)
AN> — m+1,(/1-1) YPj
2 _/S:l Up Ox

I aum+1,(l71)
AN, = /7“ &;
) /2 Oy !

I 8um+1,(/—1)
ANs = / N &
/0 oy !

¢i dxdy

¢i dxdy

@ Each matrix above can be obtained by Algorithm VIII in Chapter 8.

1N

ij=

Np

ij=

Np

1

1

47 /77

Matrix formulation
Matrix formulation

@ Define the load vector

where
Nb Nb

By — [/ flcb;dxdy] . b= [/ f2¢>,~dxdy] .
Q =1 Q i=1

=

Here the size of the zero vector is Ny, x 1. That is, 0 = [O]IN:"‘{

e Each of 51 and 52 can be obtained by Algorithm 1I-3 in
Chapter 3.

48 /77

Matrix formulation

Matrix formulation

@ Define the vector

where 0 = [O]INZb’i and

a ~ Ny
N ") m+1,(/-1)
BN, = / LD o dxdy |
Q ox -
- _ - Nb
s 3 8 m+1,(/-1)
bN> = / up T g ddy |
L Q 8}/ J4i=1
- _ - Nb
. 9 m+1,(/—1)
bN3 = / up D2 g gy |
Q Ox .
L 4i=1
- TN,
N L gumthi-D b
bN, = / mL =D Ch o ddy
L Q 8}/ Jdi=1

49 /77

Matrix formulation

Matrix formulation

@ Each vector above can be obtained by Algorithm IX in
Chapter 8.

@ Define the known vector from the previous time iteration step:

1
%o [3
m
3
where
—‘1m - [umJN:b1 ’
X" = [UZLI-V:bl ’
X = o]

50/77

Matrix formulation

Matrix formulation

@ Define the unknown vector

where

gmtL(l) _ [mt1,()]Ne
L lj=1
N r 1 Np

m+1,(/) m+1,(/)
L lj=1
N N,
xm+1.() m+1,(1)] PP
3 - g lji=1

51/77

Matrix formulation

Matrix formulation

@ Define

M 5
Am+1,(/) _ A
At +A+ AN, At

@ Forstep / (I =1,2,---,L) of the Newton's iteration at the
(m 4 1)t step of the time iteration, we obtain the linear
algebraic system

o Let X™1 be the final X™+1() from the above Newton's
iteration at the (m -+ 1) step of the time iteration.

52 /77

FE method

Outline

© FE method

53 /77

FE method
Assembly of a time-independent matrix

Recall Algorithm I-3 from Chapter 3:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:
FORn=1,--- N:
FOROJZ].,”- 7IV/bZ

FORB=1,--- Ny
r+s +
Compute r = fEn c%:,g}',’;" %Dx:gy"f dxdy;
Add r to A(Tp(B, n), Tp(a, n)).
END
END

END

54 /77

FE method

Assembly of the time-independent stiffness matrix

@ Call Algorithm -3 with r =1, s =0, p=1, g =0, c = v, basis type of
u for trial function, and basis type of u for test function, to obtain A;.

@ Call Algorithm -3 with r =0, s =1, p=0, g =1, ¢ = v, basis type of
u for trial function, and basis type of u for test function, to obtain A,.

@ Call Algorithm -3 with r =1, s =0, p=0, g =1, ¢ = v, basis type of
u for trial function, and basis type of u for test function, to obtain As.

@ Call Algorithm |-3 with r =0, s =0, p=1, g =0, c = —1, basis type
of p for trial function, and basis type of u for test function, to obtain As.

@ Call Algorithm I-3 with r =0, s =0, p=0, g =1, ¢ = —1, basis type
of p for trial function, and basis type of u for test function, to obtain As.

@ Generate a zero matrix @ whose size is Ny, X Npp.
@ Then the stiffness matrix

A:[A1+2A2 A3 A5,A§ 2A2+A1 A6,Aé Aé @]

55 /77

FE method

Assembly of the mass matrix

e Call Algorithm |-3 with r=0,s=0,p=0,g=0,c=1,
basis type of u for trial function, and basis type of u for test
function, to obtain the basic mass matrix M..

@ Generate three zero matrices Q1, @5, and Q3 whose sizes are
Npp X Npp, Np x Npp, and Ny, x Ny, respectively.

@ Then the block mass matrix
M=[M. O3 Oy 03 M, @2;@5 @5 04].

56 /77

FE method
Assembly of a time-independent vector

Recall Algorithm 11-3 from Chapter 3:
o Initialize the matrix: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- ,N:
FOR ﬂ =]. N/b'
Compute r = [%pqug”f dxdy;
b(Th(B,n),1) = b(Tb(ﬂ7 n),1)+r;
END
END

57 /77

FE method
Assembly of a time-dependent vector

Recall Algorithm 1I-5 from Chapter 4:
@ Specify a value for the time t based on the input time;
e Initialize the vector: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,---,N:
FOR B =1,---,Np:
Compute r = [f(t) aap:pqg/"f dxdy;
b(Tb(ﬁ’ n)7 1) = b(Tb(ﬁ’ n)7 1) +r
END
END

58 /77

FE method
Assembly of the load vector

Call Algorithm 11-5 with p = ¢ = 0 and f = f; to obtain by (t).

Call Algorithm 1I-5 with p = g = 0 and f = f, to obtain by(t).

Define a zero column vector 0 whose size is Np, x 1.

—.

Then the load vector b = [by(t); ba(t); 0]

If 4 and f» do not depend on t, then this part is exactly the
same as the assembly of the load vector with Algorithm 11-3 in
Chapter 7.

59 /77

FE method

Assembly of a matrix for an integral with a finite element

coefficient function

Recall Algorithm VIII from Chapter 8:
o Initialize the matrix: A = sparse(Np, Np);
@ Compute the integrals and assemble them into A:

FORn=1,---,N:
FORO{Z]_,'“,N/bZ
FORﬁ:].,'--,N/bZ

Compute r = | :)):;/:)ih %f;sg;g 8;;7(%/"5 dxdy;
Add r to A(Tp(5, n), Tp(ax, n)).
END
END

END

60 /77

FE method

Assembly of a matrix for an integral with a finite element

coefficient function

o Call Algorithm VIl with d =1, e=0,r=0,5s=0, p=0,
qgq=0, ¢, = ugllfl), basis type of u for both trial and test

functions, to obtain A/.

o Call Algorithm VIl with d =0, e =0, r =1, s =0, p=20,

g=0, ¢, = u§h 2 basis type of u for both trial and test

functions, to obtam AN>.

e Call Algorithm VIIIWith d=0,e=0,r=0,s=1,p=0,
qg=0, ¢, = ugh basis type of u for both trial and test

functions, to obtaln ANs3.

e Call Algorithm VIl with d =0, e=1,r=0,5s=0, p=0,
qg=0, ¢, = ugllfl), basis type of u for both trial and test

functions, to obtain A/,.

61/77

FE method

Assembly of a matrix for an integral with a finite element

coefficient function

e Call Algorithm VIl with d =1, e =0, r =0,s =0, p=0,
q=0,c,= uélh Y basis type of u for both trial and test

functions, to obtain A/s.

oCaIIAIgorithmVIIIWithd*O e=1r=0,s=0 p=0,

qg=0,c,= uéh basis type of u for both trial and test

functions, to obtaln ANg.

e Generate a zero matrix Q; = [O]II-\’Ij’il, [O]IIV”’II:II"”1
Ny, N
03 = [O];:blfzpr

@ Then the stiffness matrix

A = [AN;+AN>+AN3 ANy Oo; ANs ANg+AN+AN; Q3; 05 Qf Oq].

62 /77

FE method

Assembly of the vector for an integral with two finite

element coefficient functions

Recall Algorithm IX from Chapter 8:
o Initialize the vector: b = sparse(Np, 1);
@ Compute the integrals and assemble them into b:
FORn=1,--- N:
FOR/B:].,-” ,N/b:
Compute £ = [710 1 P gy,
b(Tb(ﬁ’ n)v 1) = b(Tb(ﬁ’ n)7'1) +r
END
END

63 /77

FE method

Assembly of the vector for an integral with two finite

element coefficient functions

e Call Algorithm X with d =0, e =0, r=1,5s=0, p=0,
g=~0and f; = u§h b , o = ugh 2 to obtain H/\.

Call Algorithm X with d =0, e=0,r=0,s=1, p=0,

g=20and f; = uélffl), fho = ugh Y to obtain bN>.

Call Algorithm X with d =0, e=0,r=1,5s=0, p=0,

g=20and f; = uy,fl), fro = ugh Y to obtain bNj3.

Call Algorithm IXWith d=0,e=0,r=0,s=1, p=0,

g="0and f; — i, o = 0" to obtain bV,

Define a zero column vector 0 whose size is Npp x 1

Then the load vector b_/\7 = [bNy + bN2; bN3 + bNy; 6].

64 /77

FE method

Time-dependent Dirichlet boundary condition

Recall Algorithm 111-4 from Chapter 9:

@ Specify a value for the time t based on the input time;

@ Deal with the Dirichlet boundary conditions:
FOR k=1,--- nbn:
If boundarynodes(1, k) shows Dirichlet condition, then
i = boundarynodes(2, k);

A(i,) = 0;

A(i,i) = 1;

b(i) = g1(Ps(:, 1), 1);

A(Np+i,:) =0;

A(Np + i, Np + i) = 1;

b(Np + i) = g2o(Ps(:, 1), t);
ENDIF

END

65 /77

FE method

Main pseudo code

Algorithm B:
@ Generate the mesh information matrices P and T.

@ Assemble the mass matrix M and stiffness matrix A by using Algorithm [-3.

@ Generate the initial vector X°.

@ lterate in time: FOR m=0,--- ,Mp —1
o tm+1 = (M4 1)At;
o Assemble the load vector b by using Algorithm I1-5.
o Newton iteration: FOR [=1,2,--- L
o Assemble the matrix AN by using
_>
) Assemble the vector bN by using
° AL = M A4 AN and B0 = B4 M Xm 4 b
° Treat Dirichlet boundary for A™+1.() and bm+1.() by Algorithm 111-4.
Solve Am+L,() Xm+1,()) = pm+1,() for X.
END
° Let X™+1 be the final X™+1.() from the above Newton's iteration.
END

66 /77

FE method
Numerical example

e Example 1: On the domain Q = [0, 1] x [—0.25, 0], consider
the time-dependent Navier-Stokes equation

ur+ (u-Vu—V-T(u,p)=Ff inQx]0,1],
V-u=0 in Q x [0,1].

67 /77

FE method

Numerical example

Independent study topic:

@ (1) Following the traditional way, which was used to set up
the numerical examples in the previous chapters, determine
the source term f, initial condition, Dirichlet boundary
conditions, and fixed value of p at (0,0) such that the
analytic solutions of this problem are

up = (x2y? + e ¥)cos(2rt),

2
up = —gxy3 +2 — 7sin(mx)| cos(2t),
p = —[2 — wsin(mwx)] cos(2my)cos(2rt).

o (2)Choose h=1/8, 1/16, 1/32 and At = 8h3. Use the
Taylor-Hood finite elements with backward Euler scheme to
solve this equation and provide the numerical errors of u and
pin L2, L*°, and H! norms.

68 /77

More Discussion

Outline

@ More Discussion

69 /77

More Discussion

Mixed boundary conditions

@ The treatment of the stress/Robin boundary conditions is
similar to that of Chapter 7.

e If the functions in the stress/Robin boundary conditions are
independent of time, then the same subroutines from Chapter
7 can be used before the time iteration starts.

e If the functions in the stress/Robin boundary conditions
depend on time, then the same algorithms as those in Chapter
7 can be used at each time iteration step. But the time needs
to be specified in these algorithms.

70 /77

More Discussion
Mixed boundary conditions

o Consider
u: + -V -T(u,p)=f in Qx[0, T],
V-u=0 in Qx[0, T],
T(u,p)n =p on sx[0, T],
T(u,p)n+ ru=gq on gx]0, T],
u=g onlpx][0, T],
u=ug, att=20andin Q.

where s, TR CO0Q and p = GQ/(FS U FR).

71/77

More Discussion
Mixed boundary conditions

o Recall
/ u; - v dxdy + +/ 2vD(u) : D(v) dxdy
Q Q
—/ p(V -v) dxdy—/ (T(u,p)n)-v ds = /f-v dxdy,
Q o0 Q
—/(V -u)q dxdy = 0.
Q
@ Since the solution on 'p = 9Q/(F's UTR) is given by u = g,

then we can choose the test function v(x, y) such that v=10
on 89/(F5 U FR).

72/77

More Discussion
Mixed boundary conditions

@ Hence, similar to the treatment of the mixed boundary
condition in Chapter 7, the weak formulation is to find
u e HY0, T; [HY(Q)]?) and p € L%(0, T; L?(2)) such that

/ut~v dxdy +
Q

—1—/ 2vD(u) : D(v) dxdy — / p(V -v) dxdy—l—/ ru-v ds
Q Q s

:/f-v dxdy+/ q-v ds+/ p-v ds,
Q Mk Jrs
—/(V -u)q dxdy = 0.
Q
for any v € [H3p(Q)]? and g € L2(Q2) where
H3p(Q) = {w € H(Q) : w=0o0nTp}.
@ Code? Combine all of the subroutines for Dirichlet/Stress/Robin

boundary conditions. B

More Discussion

Mixed boundary conditions in normal/tangential directions

o Consider

u: + —V . -T(u,p)=f in Qx[0, T],

V-u=0 in Qx|0, T],

6"T(u, p) = py, 7 T(u,) = pr on T x[0, T],

n‘T(u, p)n + rnu = g,, 7'T(u, p)n + rrfu = g, on Trx[0, T],
u=g on lpx[0, T],

u=ug, att=20andin Q.

where ['s, T C0Q, Tp =0Q/(TsUTR), n=(n1, m)tis
the unit outer normal vector of 99, and 7 = (11, 72)" is the
corresponding unit tangential vector of 9Q2.

74/77

More Discussion

Mixed boundary conditions in normal/tangential directions

o Recall
/ u; - v dxdy + +/ 2vD(u) : D(v) dxdy
Q Q
—/ p(V -v) dxdy—/ (T(u,p)n)-v ds = /f-v dxdy,
Q o0 Q
—/(V -u)q dxdy = 0.
Q
@ Since the solution on 'p = 9Q/(F's UTR) is given by u = g,

then we can choose the test function v(x, y) such that v=10
on 89/(F5 U FR).

75 /77

More Discussion

Mixed boundary conditions in normal/tangential directions

@ Similar to the derivation of mixed boundary conditions in
normal /tangential directions in Chapter 7, we obtain

/BQ(']T(u,p)n) ‘v ds
/ (T(u, p)n) - v ds +/ (T(u, p)n) - v ds

Is M'r

+/a (T(u, p)n) - v ds
Q/(TsUlR)
[/rs pn(nfv) ds + /Fs pr(7tv) ds}

+ [/FR gn(n'v) ds + /FR g-(t'v) ds}
- [/ (mtu)(n'v) ds+ [(rru)(r'v) ds} ,

M'r M'r

76 /77

More Discussion

Mixed boundary conditions in normal/tangential directions

@ Hence, similar to the treatment of the mixed boundary conditions in
normal/tangential directions in Chapter 7, the weak formulation is
to find u € H1(0, T;[H*(Q)]?) and p € L(0, T; L3(Q)) such that

/ u; - v dxdy + +/ 2vD(u) : D(v) dxdy
Q Q

_/Qp(v.v) dxdy+ /F‘R(rntu)(ntv) ds + / (rrfu)(r'v) ds

JTR

:/f-v dxdy+/ gn(n'v) ds+/ q-(ttv) ds
Q

JTr JTr

+/ pn(n'v) ds—i—/ pr(Ttv) ds,
Is

s
—/(V -u)q dxdy =0,
Q

for any v € [H35(R2)]? and g € L2(Q).

@ Code? Combine all of the subroutines for Dirichlet/Stress/Robin
boundary conditions. 77/77

	Weak formulation
	Semi-discretization
	Full discretization
	Newton's iteration
	Matrix formulation
	FE method
	More Discussion

