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Assignment 2: Public Key Cryptography and Hash Functions 
Cryptography and Secure Communications (MITS5500) 

Prepared by: Miguel V. Martin, PhD, PEng 
Due: October 30th, 2020 by 11:59 pm 

 
This is an individual assignment; collaboration is not allowed. Don’t zip your submission. 
 
1. RSA [Marks: 25%] In a public-key system using RSA, you intercept the ciphertext   C 
= 10 sent to a user whose public key is {e = 5, n = 35}. Show all your work (either Math 
or Python) to answer the following two questions (not necessarily in that order): 
a) What is the plaintext M? Hint: with n = 35, a brute force may save you headaches. 
b) What is the secret exponent d in the private key {d = ?, n = 35}? 
 
2. Key Exchange [Marks: 25%]. In a Diffie-Hellman scheme with a common prime q = 
11 and a primitive root α = 2: 
a) If user A has public key YA = 9, what is A’s private key X? 
b) If user B has public key YB = 3, what is the secret key K, shared with A? 
Show all your work (either Math or Python). 
 
3. The Birthday Paradox Attack [Marks 25%]. Johnny, an Ontario Tech graduate 
recently got a job at CSE in Ottawa. As part of a pilot project, every month CSE announces 
a list of 3 prime numbers (all less than 28) in proxy repositories which automatically sign 
the 3 numbers for Navy bases across the Country to fetch them. These numbers become 
part of public keys so confidentiality is not required, only signature. In his very first day at 
work, Johnny volunteers to take charge of the automatic signature generation in the Bay of 
Fundy proxy (as it was close enough to his native Saint John). He decided to sign the 3 
numbers using a hash value consisting of the bitwise XOR amongst the bit representation 
of these 3 numbers and then encrypting the hash value using CSE’s private RSA key. 
Further, he made sure his automatic process only signed the numbers if all of the 3 numbers 
were prime (i.e., if at least one of the 3 numbers were composite the process would refuse 
to sign). 

Last month’s numbers were {251, 157, 191}. Johnny’s program computed the hash 
to be 217 (because 251 XOR 157 XOR 191 = 217) which then was encrypted with RSA 
and appended to the set of numbers as signature. Shortly after, CSE suspected a probable 
compromise of the Bay of Fundy proxy since the Nova Scotia Navy Base ended up using 
composite numbers in their crypto operations causing serious disruptions in the pilot 
project! During his debrief, Johnny claimed that to forge the signature with probability ½, 

an attacker would need to compute the hash values of 1282
2
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  sets of 3 random 

composite numbers, not to mention that the attacker would require to break RSA. But his 
boss, an experienced cryptographer advises that Johnny’s claims were overly optimistic, 
saying that the attacker could forge a signature with probability greater than ½ by 
computing the hashes of only 1622 42/8   (not 128) sets of 3 random composite 
numbers, and that the attacker wouldn’t even have to break RSA at all. Johnny was 
speechless! In her explanation, Johnny’s boss alluded to the birthday paradox, a concept 
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that for some reason Johnny never quite grasped while taking MITS5500 at Ontario Tech. 
Help Johnny understand the birthday paradox, after the fact, by following these steps:  

 
(a) Compute the hashes of 24 = 16 sets of 3 random prime numbers less than 28.  
(b) Then keep selecting sets of 3 fraudulent composite numbers less than 28 until you 

find a set {c1, c2, c3} with a hash value that matches one of the hashes computed 
in step (a); we will refer to that matching set as {p1, p2, p3}. 

(c) Explain to Johnny that the attacker would replace the legitimate prime set {251, 
157, 191} with the fraudulent composite set {c1, c2, c3} in the Bay of Fundy 
proxy server. The attacker would then use Johnny’s automatic signing process to 
sign the prime set {p1, p2, p3} and append such signature to the composite set 
{c1,  c2,  c3}. At this point the attacker has been successful at signing the 
composite set {c1,  c2,  c3} without knowing CSE’s RSA private key and by 
computing just over 16 hashes (i.e., 16 from Part (a) + some from Part (b)). 

(d) Submit a screenshot like the one depicted in the figure below. 
 
(Notes: Of course, Johnny wasn’t so naïve as to suggest such a simple scheme for signing; in reality he was using SHA-
256 but here we are simplifying things just to get the concept across (see Question 4). Also, CSE uses prime numbers in 
the order of 22048, not 28. As per Johnny’s future at CSE, don’t worry; his boss decided to give him a second chance. 
Johnny was spotted last evening close to the ByWard Market enjoying a beaver tail with his partner.) 
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4. Attempting a Birthday Attack on SHA-256 [Marks: 25%]. Write a Python program 
using cryptography.io that tries to find a collision like in Question 3 but now instead of 
XOR-ing the three prime numbers, use SHA-256 as in the Python sample code below (from 
https://cryptography.io/en/latest/hazmat/primitives/cryptographic-hashes/). Let your 
program generate a thousand hash values of random fraudulent messages (i.e., sets of three 
composite numbers) and report whether a collision was found as in Question 3. Submit a 
screenshot like the one depicted in the figure above for Question 3 (but don’t show the 
1,000 values; 10 would do). Quite likely, you won’t find a collision; but if you do, you will 
get full marks in this assignment regardless of the marks in the other questions. Oh! And 
don’t worry about Johnny, he has decided to go back to Ontario Tech for a Doctoral degree 
under the supervision of Prof. Martin, while yet declining a promotion at CSE. 
 

from cryptography.hazmat.backends import default_backend 
from cryptography.hazmat.primitives import hashes 
digest = hashes.Hash(hashes.SHA256(), backend=default_backend()) 
digest.update(b"251") 
digest.update(b"157") 
digest.update(b"191") 
digest.finalize() 


