
Artificial Intelligence and Expert Systems

Project 3 - Reinforcement Learning (updated)

Instructors: Due Date: 28 Tir, 1403
Dr. Esmaeil Najafi
Armin Ghanbarzadeh
Reza Behbahani Nezhad

Project Task 1: Maze Environment

In this task, you will implement reinforcement learning algorithms in the “Frozen Lake” environment from
OpenAI Gym (Fig. 1). The top-left block serves as the default starting position. The blue blocks represent
holes, and if the agent reaches these blocks, it will receive no reward (+0 Reward). The goal block is depicted
by a present box, which grants the agent a reward of +1. The permissible actions in this environment are; 0:
Move left; 1: Move down; 2: Move right; 3: Move up.
For additional information regarding this environment, please refer to the Frozen Lake website, Github code.
The environment setup is provided in the file RL Project TASK1.ipynb.

Figure 1: Custom Frozen Lake environment for Task 1.

Minimum requirements of this task:

(a) Create a Q-Learning agent to find a policy for reaching a goal.

(b) Create a SARSA agent to find a policy for reaching a goal.

(c) Check the effects of changing the discount factor.

(d) Check the effects of adding uncertainty in the environment. (is slippery=True).

(e) Plot accumulated reward and report the policy matrix for each experiment.

(f) Compare the results and write your own conclusion.

1

https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/toy_text/frozen_lake.py

Project Task 2: Mobile Robot Control

In this task, you will design reinforcement learning algorithms to control a unicycle mobile robot. The objective
is to reach the goal state. The environment setup is provided in the file RL Project TASK2.ipynb.

Robot Dynamics - Discrete Space

The robot moves in a 20 × 20 grid in 8 discrete directions corresponding to horizontal, vertical, and diagonal
movements. The robots direction θ is between 0-7 corresponding to 45 deg increments:

(xt, yt) θ = 0

θ = 1θ = 2θ = 3

θ = 4

θ = 5 θ = 6 θ = 7

Figure 2: Robot movement based on current direction θ

The dynamics of this robot are:

θt+1 = θt + ωt

(xt+1, yt+1) =



(xt + vt, yt) if θt+1 ≡ 0

(xt + vt, yt + vt) if θt+1 ≡ 1

(xt, yt + vt) if θt+1 ≡ 2

(xt − vt, yt + vt) if θt+1 ≡ 3

(xt − vt, yt) if θt+1 ≡ 4

(xt − vt, yt − vt) if θt+1 ≡ 5

(xt, yt − vt) if θt+1 ≡ 6

(xt + vt, yt − vt) if θt+1 ≡ 7

The goal state can also be calculated relative to the robot moving frame. For more information, refer to the
environment code.

Environment Design - Discrete Space

The unicycle mobile robot is modeled in a 2D plane with the following state and action spaces:

• Observation Space (s): The observation of the robot is represented as a dictionary containing:

– states: A list [0, 0, 0] ⩽ [x, y, θ] < [20, 20, 8] representing the position (x, y) and orientation θ of the
robot in the global frame.

– relative states: A list [−40,−40, 0] ⩽ [ex, ey, eθ] < [41, 41, 8] representing the relative position
(ex, ey) and orientation eθ with respect to the goal state. (Note that the position errors can be both
positive and negative. Also, since the robot is moving in a discrete grid, the relative distance could
be 0.5 for cases when the robot is facing diagonal. Because of this, we multiply the distances by 2
to make them discrete again. For more information, look at the code)

• Action Space (a): The action space is a list [v, w] ∈ {−1, 0,+1}2 of velocity and angular velocity.

Functions to Implement

First, complete the environment by implementing the get reward() and is done() functions based on your
knowledge from the course.

The get reward() function should return a reward with each action. The goal should be to encourage the
robot to reach a target position (xgoal, ygoal) or a target position-orientation (xgoal, ygoal, θgoal).

2

def get_reward(self):

return: float (reward)

x, y, theta = self.state

ex, ey, etheta = self.relative_state

...

return reward

The is done() function should determine whether the episode has ended. This can be based on whether the
robot has reached the target position or other conditions like time limits.

def is_done(self):

return: bool (True if done, False otherwise)

x, y, theta = self.state

ex, ey, etheta = self.relative_state

...

return done

Minimum requirements of this task:

(a) Explain your reasoning behind defining functions get reward() and is done(). What other choices did
you have?

(b) Implement an RL algorithm to solve the control problem for the unicycle mobile robot. Explain the
approach and considerations in your solution. (The choice between Q-learning and SARSA is up to
yourselves!)

(c) Explain and discuss the reason for choosing the algorithm and the functions.

(d) Save the average reward of the algorithm in each episode, plot the diagram, and discuss the results.

(e) What changes in the observation-space, get reward() function and is done() functions do you suggest
for obstacle avoidance capability (no implementation needed - implementation has bonus score). Provide
reasons to support your ideas.

Bonus Score Section: Deep Reinforcement Learning in Continuous
space

For the bonus part of the assignment, you can implement deep RL algorithms for the unicycle robot in con-
tinuous spaces using popular frameworks like Stable-Baselines3. The environment setup is provided in the file
RL Project TASK2 Bonus.ipynb.
Some of the algorithms you can consider are: Deep Q-Networks (DQN), Proximal Policy Optimization (PPO),
Deep Deterministic Policy Gradient (DDPG) and Trust Region Policy Optimization (TRPO). You are free to
choose any deep RL algorithm and framework of your choice. Make sure to include the implementation details
and learning curves.

Robot Dynamics - Continuous Space

The dynamics of the unicycle robot are given by the following equations:

θ̇ = w

ẋ = v cos(θ)

ẏ = v sin(θ)

Where v is the linear velocity and w is the angular velocity. The discrete-time equations can be derived from
the continuous-time equations using a time step of Ts:

θt+1 = θt + wTs

xt+1 = xt + vTs cos(θt)

yt+1 = yt + vTs sin(θt)

The goal state can also be calculated relative to the robot moving frame with the transformation (Fig. 3):

3

 eθ
ex
ey

 =

 0 0 1
cos(θt) sin(θt) 0
− sin(θt) cos(θt) 0

 θgoal − θt
xgoal − xt

ygoal − yt



Figure 3: The illustration of the error in relative coordinates.

Environment Design - Continuous Space

The unicycle mobile robot is modeled in a 2D plane with the following state and action spaces:

• Observation Space (s): The observation of the robot is represented as a dictionary containing:

– states: A list [x, y, θ] representing the position (x, y) and orientation θ of the robot in the global
frame.

– relative states: A list [ex, ey, eθ] representing the relative position (ex, ey) and orientation eθ with
respect to the goal state.

• Action Space (a): The action space is a list [v, w] of velocity and angular velocity in [−1, 1]2.

Important Notes

− Please submit your homework assignment as a zip file containing (a) a PDF report (analysis,
results, methodology, ...), and (b) code files necessary to reproduce your results.

− All grading will be based on the content of the PDF report. Make sure to include and explain
your code in the report.

− Please make sure to submit your solutions by the due date. No late submissions will be accepted.

− Assignments are to be completed individually. Any similarities between assignments will be subject
to reduced grades.

− If you have any questions, feel free to ask.

Good Luck!

4

