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Abstract
This study explores the application of machine learning algorithms for the prediction of pan evaporation (Ep), which is 
a critical factor in water resource management for the assessment of water demand and usage. Specifically, this research 
evaluates the effectiveness of two base models: Random Forest (RF) and Multi-Layer Perceptron (MLP) and their optimized 
counterparts using a Genetic Algorithm (GA), designated as GA-RF and GA-MLP, for modeling Ep at a target station using 
data from adjacent stations. The datasets were split into a training set (70%) and a testing set (30%). The models’ perfor-
mances were judged using three statistical measures: Correlation Coefficient (CC), Scattered Index (SI), and Willmott’s 
Index of agreement (WI). The enhanced models, particularly GA-MLP-5, showed superior performance with a CC of 0.8704, 
SI of 0.2539, and WI of 0.9212, indicating the potent ability of GA to refine RF and MLP models for predictive accuracy. 
Additionally, sensitivity analysis via the GA-RF indicates the varying influence of Ep from neighboring stations on the 
target station, shedding light on key predictors for effective water management. Conclusively, this study demonstrates that 
the hybrid models have significant potential in accurate Ep estimation and can be expanded to predict other meteorological 
variables, offering valuable tools for water resource management strategies.
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Introduction

Evaporation is an important element in the hydrological 
cycle and is how the water changes into the vapor then get 
into the air. This process needs energy absorption to change 
in vapor pressure (Wu et al. 2020; Sebbar et  al. 2019). 

Evaporation is one of the most intricate factors in the 
hydrologic cycle to be analyzed because of the complicated 
connection among water, land, and atmospheric systems. 
Therefore, the estimation of evaporation is a crucial part 
of agriculture and water resources management, and it 
attracts the attention of scholars all around the world (Feng 
et al. 2018; Fan et al. 2016; Gundalia and Dholakia 2013; 
Adnan et al. 2019; Yaseen et al. 2020). Several methods exist 
to predict the evaporations, such as Penman method, mass 
transfer method, energy, water balance technique, and pan 
evaporation (Ep). The pan evaporation technique is utilized 
worldwide because it is affordable and has an uncompli-
cated operation (Keshtegar et al. 2016). However, different 
factors like debris in the water, pan size, water depth in the 
pan, materials used to build the pan, animal activity in and 
around the pan can create errors in the measurement of Ep 
(Piri et al. 2009).

Furthermore, wind speed, the temperature of soil and 
air, sunshine, relative humidity, the pressure of the atmos-
phere, and vapor have an indispensable influence on evapo-
ration. For instance, when the radiation and temperature 
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increase, the rate of evaporation will rise. Likewise, wind 
speed contributes to evaporation by removing water from 
water bodies. However, the effect of the parameters, as 
mentioned earlier, is not well recognized on Ep estima-
tion. Hence, the estimation of evaporation is considered 
of great essence. Direct and indirect techniques are uti-
lized for predicting evaporation (Kisi 2015; Allawi and 
El-Shafie 2016). However, the usage of evaporation pans 
can reduce Ep measurement accuracy due to instruments' 
restrictions in various circumstances (heavy rainfall or 
strong wind) and practical difficulties (Wang et al. 2017; 
Ghaemi et al. 2019). In the indirect methods, several cli-
matic variables such as solar radiation, wind speed, and 
air temperature are required to estimate evaporation, but, 
in the specific regions, these elements are not attainable. 
Moreover, developing a mathematical relationship that 
encompasses all factors that affect evaporation, owing to 
the nonlinear and complex system of predicting evapora-
tion, is almost impossible. Therefore, numerous hydrologic 
models are suggested by researchers to predict evaporation 
(Wang et al. 2017).

Various machine learning algorithms, including sup-
port vector machine (SVM), random forests (RF), adap-
tive neuro-fuzzy inference system (ANFIS) (Haddadi 
et  al.  2022), multivariate adaptive regression splines 
(MARS), gene expression programming (GEP) (Birbal 
et al. 2021; Chaplot 2021), artificial neural network (ANN) 
(Mohammadi 2023; Jayathilake et al. 2023), and gradient 
boosted decision tree (GBDT) are used to estimate Ep 
and other hydrological parameters (Rahimikhoob 2009; 
Abghari et al. 2012; Keshtegar et al. 2016; Kisi et al. 2016; 
Yu et al. 2016; Yang et al. 2017; Xu et al. 2017; Chen 
et al. 2017; Wang et al. 2017; Behrooz et al. 2019; Zhu 
et al. 2009, 2019a, b). These models created better out-
comes in comparison with the empirical approaches. Kisi 
(2009) used available climatic data to model the evapora-
tion procedure by using three various ANN methods and 
revealed that the radial basis neural network (RBNN) and 
MLP methods could be utilized effectively for this purpose. 
Piri et al. (2009) used the ANN model, which is optimized 
by autoregressive external input (ARX) and assessed the 
model to estimate the Ep parameter at Southeast of Iran. 
Based on the result of the study, the optimized NNARX 
model performed better than ANN and Marciano models. 
Furthermore, the model with vapor and wind pressure 
inputs has higher precision than dew point and tempera-
ture. Lin et al. (2013) assessed the precision of two meth-
ods, including the SVM approach and a back-propagation 
network (BPN), in predicting the monthly evaporation and 
found that the SVM method produced more accurate results 
than other similar methods. In order to predict the daily Ep, 
the cascade correlation neural networks (CCNN) and the 
MLP model are utilized by Kim et al. (2014). The results 

showed the superiority of the CCNN model when com-
pared with MLP for both heterogeneous and homogeneous 
meteorological stations. Malik et al. (2017) evaluated the 
performance of the self-organizing map neural network, 
CANFIS, MLP, and RBFNN models. These models were 
specifically applied to estimating the monthly Evapotran-
spiration (Ep) parameter in India, with studies conducted 
at Pantnagar and Ranichauri stations. Using six input mete-
orological elements, the MLP and CANFIS models had the 
least error compared to other models. Feng et al. (2018) 
developed three machine learning models to predict the 
Ep and evaluate their performance. The results showed that 
the ELM method has superior performance compared with 
PSO-ANN (ANN optimized by particle swarm algorithm) 
and GA-ANN (ANN optimized by the genetic algorithm). 
Lu et al. (2018), in addition to using three methods of RF, 
GBDT, and M5, implemented four empirical models for 
estimating Ep in the lake of Poyang. They discovered that 
machine learning techniques had a superior performance 
than the empirical models. Among the mentioned tech-
niques, the GBDT created accurate results than others. 
Majhi et al. (2019) investigated the efficiency of deep neu-
ral networks (DNN) in estimating the daily Ep in India, 
which showed that this method had better performance than 
empirical models and MLP. In order to estimate monthly, 
Ep, Kisi and Heddam (2019) used MARS and M5 with 
temperature data as inputs and utilized different split-
ting tactics for each model. The results disclosed that the 
performance of the MARS method was higher than M5, 
and increasing the amount of data increases its accuracy. 
Tree-based (M5 tree, random forests) machine learning 
techniques can be used for evaporation prediction due to 
their simple and strong nature (Alipour et al. 2014; Has-
san et al. 2017). These models are popular because of their 
ability to compute large datasets (Hassan et  al. 2017). 
Combining various methods to construct the hybrid models 
obtained the attention of researchers in the field of hydrol-
ogy. Owing to the specific characteristics of each method, 
the hybrid models can increase the precision of models. For 
instance, Nourani et al. (2019) used the hybrid Wavelet-M5 
for modeling the Suspended Sediment Load. The outcomes 
indicated that the performance of the hybrid model is better 
than the individual ANN and M5 models. A hybrid wave-
let-linear genetic programming (WLGP), artificial neural 
network (ANN), Multi Linear Regression (MLR), LGP, and 
a hybrid wavelet-ANN (WANN) models are implemented 
to streamflow prediction by Ravansalar et al. (2017) in two 
stations of Pataveh and Shahmokhtar at Beshar River. They 
compared the outcomes of different models and based on 
the obtained results. The WLGP model increased monthly 
streamflow estimation precision in both Beshar River sta-
tions (Iran). Other studies have shown the superiority of 
combined methods over individual methods. For example, 
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Chaudhary et al. (2020) demonstrated the success of using 
the Ensemble Particle Swarm Optimization (EnsPSO) 
method for vegetable crop disease recognition. Chaud-
hary et al. (2016a) introduced an improved-RFC (Random 
Forest Classifier) technique for multiclass crop disease 
classification problems and showed the assumed model's 
optimal performance. Chaudhary et al. (2016b) integrated 
supervised instance filter- Resample and Gain Ratio feature 
ranking techniques and then combined the calculations of 
Naïve Bayes and Logistic Regression utilizing ensemble-
Vote for oilseed disease classification. The results proved 
the success of the new hybrid model.

The previous research gaps and the current research 
objectives are as follows:

1- Limited studies on the integration of RF and MLP mod-
els with GA for such specific predictions.

2- Inadequate research using limited reference station data 
to predict pan evaporation for a different target site.

3- Lack of comparative analysis to understand the ben-
efits of using hybrid models over traditional or singular 
model approaches.

4- Integration of Hybrid Models: Current research lacks in-
depth investigations into the integration of RF and MLP 
models within a hybrid framework for the prediction of 
pan evaporation. This hybrid approach may leverage the 
strengths of both individual models and improve predic-
tive accuracy.

5- Use of Genetic Algorithms: There is a scarcity of studies 
that have systematically integrated GAs with hybrid RF 
and MLP models for optimizing predictive performance 
in hydrological simulations.

6- Data Limitation Challenges: Previous studies have pre-
dominantly relied on extensive and complete datasets 
from the same geographical location as the target predic-
tion site. This research contributes to the field by utiliz-
ing a limited set of neighboring reference station data 
to predict pan evaporation at the target site, an approach 
not widely addressed in existing models.

7- Generalization across Different Climates: Few studies 
have explored the adaptability and accuracy of hybrid 
models across different climatic conditions, especially 
when using data from reference stations with diverse 
characteristics.

8- Generalization across Different Climates: Few studies 
have explored the adaptability and accuracy of hybrid 
models across different climatic conditions, especially 
when using data from reference stations with diverse 
characteristics.

We aim to bridge these gaps by providing a comprehen-
sive analysis of the model’s performance and demonstrating 
its potential advantages over conventional methods, thereby 

offering new insights and directions for future research in 
hydrological predictions.

Evaporation is one of the main processes in nature's 
water cycle and one of the most important factors in agri-
cultural, hydrological and meteorological studies, reser-
voir operation, irrigation scheduling, and water resources 
management. Therefore, accurate estimation of evaporation 
has great importance in hydrological studies. According to 
the researches, the proper performance of machine learn-
ing methods in estimating hydrological parameters is quite 
evident. On the other hand, hybrid models have improved 
the performance of single models. So, to summarize and 
evaluate the previous research, it can be said that most of 
the researches did not have valid results. Most meteorologi-
cal parameters dependent on evaporation were used, and 
hybrid methods were rarely used to predict evaporation. In 
this study, the Ep data of adjacent stations were also used 
to predict the target station Ep, which can be used without 
Ep-dependent data. Due to the simpler structure and better 
performance compared to experimental equations and other 
known machine learning methods for predicting Ep and 
the coupling with GA to upgrade the models, MLP and RF 
methods were used. This paper aims to provide high-preci-
sion modeling and investigate the applicability of the RF 
and MLP models for predicting pan evaporation. Moreover, 
to increase the accuracy of the stated models, RF and MLP 
are hybridized with a Genetic Algorithm (GA) to create 
new RF-GA and MLP-GA models for estimating Ep values 
in seven stations of Iran. The hybrid RF-GA models have 
not been utilized for evaporation estimation to the best of 
our knowledge.

Materials and methods

Study area

With an area of   about 17,800 square kilometers, Arda-
bil province occupies about 1.1 percent of the total area 
of   Iran. This province is located in northwestern Iran, 
which shares borders with the Republic of Azerbaijan 
from the north and Gilan, East Azerbaijan and Zanjan 
provinces from the east, west and south, respectively. The 
geographical coordinates in this province are in the range 
of 37° 45′ to 39° 42′ North latitude, and 47° 30′ to 48° 55′ 
East longitude, and its average altitude is 2,400 meters 
above sea level. So that its lowest point with a height 
of 100 meters is in Parsabad and Bileh Savar cities, and 
its highest point is Sabalan Mountain with a height of 
4,811 meters. Ardabil province in the axis of longitude 
(with an expansion of 1 degree and 35 minutes), along 
with the height factor of its plains and mountains with 
a matched combination, is adjacent to the Caspian Sea 
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and a large extent in the north-south direction in latitude 
(2 degrees and 31 minutes) has given a lot of climate 
diversity to Ardabil province. About two-thirds of it has 
a mountainous texture with a large height difference, and 
the rest are flat and low areas. So that the north of this 
province with a low altitude has a relatively warm cli-
mate, and the central and southern regions have a cold 
mountainous climate. Also, the special geographical and 
topographic features of the province, such as mountain 
ranges with a height of more than 4,000 meters and vast 
plains, have caused this province to be in a better posi-
tion than other regions of the country in terms of pre-
cipitation so that the province's precipitation index varies 
between 250 and 600 millimeters. In the present study, 
pan evaporation data from 7 meteorological stations of 
Ardabil province, including Ardabil, Sarein, Nir, Bileh 
Savar, Meshgin Shahr, Parsabad and Khalkhal have been 
used in 10 years (2008–2018) on a daily scale. Figure 1 
shows the study area. Also, the statistical characteristics 

of the evaporation data (Table 1) is given below. Accord-
ing to Table 1, among the studied cities and in terms of 
average evaporation value, Ardabil city with 6.3 mm/day 
has the highest value and Sarein city with 5.1 mm/day 
has the lowest average evaporation rate. Furthermore, the 
maximum amount of evaporation has been recorded for 
Parsabad station with 46 mm/day value in the studied 
time period.

Random Forest (RF)

Breiman (2001) suggested the random forest method, a 
non-parametric statistical technique to make a prediction, 
and this technique uses a large number of classifications 
in the estimation process. The RF is part of an ensemble 
learning system that forms and merges multiple learners to 
reach the best generalization abilities (Prasad et al. 2006). 
In this method, the CART, one of the decision tree algo-
rithms, is used as the base learner. Among various rule 

Fig. 1  Locations of studied area 
stations in the Iran

Table 1  Statistical 
characteristics of the 
evaporation data

Stations Mean Minimum Maximum Standard 
deviation

Coefficient of 
variation

Skewness

Ardabil 6.3 0.0 21.1 3.259 0.513 0.405
Sarein 5.1 0.0 15.0 2.908 0.563 0.105
Nir 5.5 0.0 15.4 2.652 0.478 0.028
Bileh Savar 5.4 0.0 14.4 3.139 0.586 0.309
Meshgin Shahr 5.2 0.0 13.8 2.839 0.547 0.161
Parsabad 5.8 0.0 46.0 3.187 0.549 1.133
Khalkhal 6.198 0.0 16.0 2.749 0.444 0.128



1265Earth Science Informatics (2024) 17:1261–1280 

generation techniques, the RF-based model has efficient 
and high performance, and it is a more vigorous way com-
pared to other decision tree ensembles. Moreover, these 
rules can reveal the whole decision-making procedure. 
The RF working method is as follows: random subsets 
from original data are selected to build each decision tree 
consisting of two-thirds of all data (training process). The 
residual datasets, known as out-of-bag data (OOB), are 
utilized for specialized problems.

Furthermore, the lowest Gini index is implemented to 
choose the best split for variables at each node. By and 
large, the averaged aggregations indicated the RF model 
results. The datasets are split frequently until the prede-
fined situation is completed. In the RF modeling, three 
factors should be defined, including the minimum number 
of nodes, the number of variables utilized to mature any 
tree (m try), and the number of trees in the forest (n tree) 
(Nawar and Mouazen 2017). The mtry factor appoints 
the connection between trees and the resistance of every 
individual tree. By reducing relations between trees and 
rising the tree's solidity, the RF model's proficiency can 
be enhanced (Ließ et al. 2012).

Genetic Algorithm (GA)

Genetic Algorithms (GA), developed by Holland (1992) 
and Goldberg and Holland (1989), are presumptive algo-
rithms (Schwefel 1993). This method emulates Darwin's 
evolution regulation based on natural selection and is an 
efficient way to solve difficult problems. In this algorithm, 
a population of individuals, based on their strength, ability, 
and desirability, remain alive and can proliferate more than 
other individuals. After several generations, individuals with 
the best efficiency will be born. Moreover, any individual is 
stated as a chromosome (chromosomes are completed during 
various generations) and the chromosomes are nominated 
for the problem's solution. In addition, chromosomes have 
a fixed number of genes and the binary coding is a popular 
method for demonstrating them. The specific population 
is comprised of a series of chromosomes and the genetics 
operators can affect the population and form the new popu-
lation with an identical number of chromosomes. A fitness 
function is used to assess the quality of the solution for every 
chromosome. The parents for the next population are rec-
ognized by the fitness function. To attain the combination 
of genes that maximize or minimize the fitness function, 
the GA utilizes natural operators such as selection, crosso-
ver, and mutation (Holland 1992). Crossover is exerted on 
two chromosomes from the parents. In this process, the first 
part of one chromosome is utilized as the second part in 
the other one (binary string is recognized accidentally and 
cutting each of chromosomes into two parts then exchange 
them with crossing action). After the crossover section, to 

produce the randomness in the solution region the muta-
tion is implemented. Consequently, appropriate parents are 
selected to create a novel population. Then, this procedure 
happened again for various sets of populations. In the con-
text of a study involving the use of a Genetic Algorithm 
(GA) integrated with Random Forest (RF) and Multilayer 
Perceptron (MLP) models for predicting pan evaporation, 
GA parameters would play a critical role in the optimization 
process. Choosing appropriate boundaries for these param-
eters is essential for the GA to effectively search the solution 
space and converge to an optimal or near-optimal solution. 
Here’s an explanation of how the GA parameters could be 
determined in this study:

Population Size: The number of potential solutions (indi-
viduals) in each generation. A larger population may offer 
a more diverse genetic pool, but it also requires more 
computational resources. The lower and upper boundaries 
are determined based on the complexity of the problem 
and available computational power.
Crossover Rate: This parameter determines how often 
a crossover (mixing of genetic material from two par-
ents) will occur to create a new offspring. The rate 
should be high enough to allow for sufficient explora-
tion of the solution space but not too high to prevent 
premature convergence. Typically, the range is between 
60% and 90%.
Mutation Rate: The mutation rate dictates how often a 
mutation will alter a given gene. It ensures genetic diver-
sity and helps prevent the algorithm from becoming stuck 
in local optima. A common range is between 0.5% and 1%, 
however, this can be adjusted based on preliminary runs 
to avoid excessive randomness which can lead to a loss of 
good solutions.
Selection Method: While not a parameter with a numeri-
cal value, the selection method determines which indi-
viduals will be selected for reproduction. Methods like 
tournament selection, roulette wheel selection, or elite 
selection can be chosen based on which performs best 
during initial experimentation.
Elitism: This involves carrying over a certain number of 
the best individuals to the next generation without altera-
tion. Deciding on the number of elite individuals typically 
involves testing to see how it affects the balance between 
exploration and exploitation.
Number of Generations: The total number of iterations 
the GA will perform. More generations can lead to a bet-
ter solution but also a longer computation time. The range 
is often set based on when incremental improvements pla-
teau, which can be determined through exploratory runs.

The lower and upper boundaries for each parameter 
were determined based on a comprehensive approach 
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involving preliminary testing, literature benchmarking 
against similar studies, analysis of the prediction task 
complexity, and an assessment of computational resources. 
For example, the mutation rate was constrained between 
0.5% and 1% to maintain genetic diversity without induc-
ing excessive randomness in the population. These values, 
along with those for the population size, crossover rate, 
and number of generations, were iteratively adjusted in 
exploratory runs until the GA demonstrated consistent 
convergence towards optimal or near-optimal solutions. 
The chosen parameters provided a robust search capabil-
ity within the solution space, balancing exploration and 
exploitation aptly for the problem at hand.

Hybrid GA‑RF

In the random forest method, two parameters of ntrees 
and mtry which are defined earlier are the most signifi-
cant factors in its performance. Evident is that optimiz-
ing these parameters can increase its operating accuracy 

Fig. 2  The flowchart of GA-RF model

Fig. 3  The flowchart of GA-MLP model
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(Rodriguez-Galiano et  al. 2012). In this study, the GA 
is utilized as an optimizer which can minimize the score 
achieved by the fitness function. Hence, it leads to select the 
most appropriate subsets for ntrees and mtry. Furthermore, 
in the traditional RF method, trees have various portions in 
its precision. For instance, maybe some trees fortify inac-
curate estimations (Adnan and Islam 2016). Based on some 
researches, a greedy algorithm, as an optimizer, is suggested 
to ameliorate the RF model but in some cases, this algo-
rithm gives rise to becoming trapped at local optima. Like-
wise, a small number of high-quality individual learners are 

selected to create a better performance (Zhou et al. 2002). 
Consequently, the genetic algorithm is performed better in 
improving the random forest model's accuracy. The flow-
chart of the GA-RF model is shown in Fig. 2.

Multi‑layer Perceptron (MLP)

Multi-layer perceptron are the most common neural net-
works. These networks are part of the feed-forward neural 
networks that can be selected by appropriate number of lay-
ers and neurons; perform a nonlinear mapping with desired 

Table 2  Name of the models

Target station Reference stations RF GA-RF MLP GA-MLP

Ardabil Sarein, Nir, Bileh Savar, Meshgin Shahr, Parsabad, Khalkhal RF-1 GA-RF-1 MLP-1 GA-MLP-1
Sarein Ardabil, Nir, Bileh Savar, Meshgin Shahr, Parsabad, Khalkhal RF-2 GA-RF-2 MLP-2 GA-MLP-2
Nir Ardabil, Sarein, Bileh Savar, Meshgin Shahr, Parsabad, Khalkhal RF-3 GA-RF-3 MLP-3 GA-MLP-3
Bileh Savar Ardabil, Sarein, Nir, Meshgin Shahr, Parsabad, Khalkhal RF-4 GA-RF-4 MLP-4 GA-MLP-4
Meshgin Shahr Ardabil, Sarein, Nir, Bileh Savar, Parsabad, Khalkhal RF-5 GA-RF-5 MLP-5 GA-MLP-5
Parsabad Ardabil, Sarein, Nir, Bileh Savar, Meshgin Shahr, Khalkhal RF-6 GA-RF-6 MLP-6 GA-MLP-6
Khalkhal Ardabil, Sarein, Nir, Bileh Savar, Meshgin Shahr, Parsabad RF-7 GA-RF-7 MLP-7 GA-MLP-7

Table 3  Correlation coefficients 
of E values between different 
stations

Stations Ardabil Sarein Nir Bileh Savar Meshgin Shahr Parsabad Khalkhal

Ardabil 1.000
Sarein 0.666 1.000
Nir 0.732 0.738 1.000
Bileh Savar 0.604 0.607 0.641 1.000
Meshgin Shahr 0.686 0.699 0.745 0.738 1.000
Parsabad 0.516 0.519 0.560 0.763 0.652 1.000
Khalkhal 0.650 0.612 0.690 0.734 0.690 0.647 1.000

Table 4  Parameters of the RF 
and GA-RF models

A: Random Forest.number_of_trees, B: Random Forest.maximal_depth, C: Random Forest.confidence, D: 
Random, Forest.minimal_leaf_size, E: Random Forest.minimal_size_for_split, F: Random Forest.number_
of_prepruning_alternatives, G: Random Forest.subset_ratio

Models Parameter

A B C D E F G

RF-1, RF-2, RF-3, RF-4, 
RF-5, RF-6, RF-7

100 10 0.100 2 4 3 0.200

GA-RF -1 81 5 0.362 41 20 55 0.150
GA-RF -2 81 5 0.346 41 20 55 0.142
GA-RF -3 94 5 0.331 41 20 3 0.189
GA-RF -4 94 5 0.366 41 20 3 0.152
GA-RF -5 94 5 0.369 41 20 3 0.167
GA-RF -6 81 5 0.349 41 20 55 0.158
GA-RF -7 81 36 0.191 1 80 55 0.293
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accuracy (Du and Swamy 2006). MLP networks have sev-
eral layers: input layer, output layer and hidden layer or 
layers where the output of the first layer is the input vector 
of the second layer. In the same way, the output of the sec-
ond layer is the input vector of the third layer. The output 
of the second layer shows the actual network response. The 
neurons in the upper layer are related to the neurons in the 
lower layer. The role of each neuron is to calculate the sum 
of the given inputs and then pass this sum through a func-
tion called the transfer function. The transfer function can 
be a linear or nonlinear function. Two common functions in 
multi-layer perceptron networks are sigmoid function and 
sigmoid tangent. The multi-layer perceptron works in such 
a way that a pattern is supplied to the network and its output 
is calculated. Comparing the actual output with the desired 
output causes the weight factor of the network to change so 
that a more accurate output is obtained next time (Chelani 
et al. 2002).

Hybrid GA‑MLP

One of the complex modeling processes in the MLP tech-
nique is specifying the number of neurons in hidden layers, 
local random seed, error epsilon, momentum, learning rate 
and training cycles. To solve this difficulty, a novel technique 
was developed in this research in which MLP model was 
integrated with Genetic Algorithm. First step of the GA-
MLP model begins with selecting the population randomly. 
Then by considering the weight, features of each individual 
from the initial generation will be selected. In the second 
step, each individual from the population will be investi-
gated. For this purpose, the Multi-Layer Perceptron will 
be implemented by defined weights, inputs and outputs for 
each layer and neuron. Moreover, at the end of the proce-
dure, the difference between experiment and output models 

will occur. Based on the amount of MLP errors, individuals 
will be selected in the third step. Then, these individuals 
will be rated and according to the minimum error, finest 
population, which contains elite persons, will be chosen. 
Then the finest parents will be chosen for breeding by utiliz-
ing of the GA operators. The process will replicated for the 
next generations and the algorithm will run in the specified 
number of series and the attained results are stored (Sama-
dianfard et al. 2021). Finally, if the termination standards 
had satisfaction outcomes, the person with the finest func-
tion is saved. If not, this method will discover a suitable 
population with a different function. The algorithm utilized 
frequently in the training phase of this procedure is Leven-
berg–Marquardt, which has an accidental nature. Using GA 
will secure the model against this issue and elects the finest 
transfer function for the hidden and output layers. The flow-
chart of the GA-MLP model is shown in Fig. 3.

Table 5  Parameters of the MLP and GA-MLP models

A: Neural Net.training_cycles, B: Neural Net.learning_rate, C: Neural 
Net.momentum, D: Neural Net.error_epsilon, E: Neural Net.local_
random_seed

Model Parameter

A B C D E

MLP-1, MLP-2, MLP-3, 
MLP-4, MLP-5, MLP-6, 
MLP-7

200 0.0100 0.9000 0.0001 1,992

GA-MLP-1 77 0.1392 0.5319 Infinity 29
GA-MLP-2 77 0.3913 0.5447 Infinity 77
GA-MLP-3 7 0.1335 0.2405 Infinity 29
GA-MLP-4 7 0.1423 0.2405 Infinity 29
GA-MLP-5 7 0.1657 0.2502 Infinity 29
GA-MLP-6 7 0.1530 0.2458 Infinity 29
GA-MLP-7 4 0.1372 0.0714 Infinity 29

Table 6  General results of the computations for the RF, GA-RF, MLP 
and GA-MLP models

Model Statistical parameters

CC SI WI

RF-1 0.7670 0.3424 0.8442
GA-RF-1 0.7743 0.3412 0.8386
MLP-1 0.7796 0.3481 0.8407
GA-MLP-1 0.7813 0.3284 0.8695
RF-2 0.7797 0.4509 0.8416
GA-RF-2 0.7858 0.4498 0.8349
MLP-2 0.7892 0.4366 0.8484
GA-MLP-2 0.7892 0.4113 0.8774
RF-3 0.8428 0.2615 0.9103
GA-RF-3 0.8486 0.2584 0.9065
MLP-3 0.8349 0.2743 0.9114
GA-MLP-3 0.8497 0.2654 0.9129
RF-4 0.8502 0.2906 0.9199
GA-RF-4 0.8511 0.2790 0.9203
MLP-4 0.8519 0.3176 0.9077
GA-MLP-4 0.8477 0.2854 0.9191
RF-5 0.8617 0.2621 0.9245
GA-RF-5 0.8673 0.2568 0.9226
MLP-5 0.8692 0.2824 0.9158
GA-MLP-5 0.8704 0.2539 0.9212
RF-6 0.7091 0.4221 0.7872
GA-RF-6 0.7162 0.4206 0.7825
MLP-6 0.7240 0.4125 0.8031
GA-MLP-6 0.7134 0.4162 0.7984
RF-7 0.8123 0.2738 0.8682
GA-RF-7 0.8105 0.2731 0.8691
MLP-7 0.8128 0.2841 0.8624
GA-MLP-7 0.8156 0.2626 0.8864
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Evaluation of results

For evaluating the studied model's performance, various 
standard statistics are utilized. In this study, Taylor diagram 

known as one of the evaluation meters is used. The perfor-
mance indexes including Correlation coefficient (CC), Scat-
tered Index (SI), and Willmott's Index of agreement (WI) are 
calculated with the following formulas:

Fig. 4  Observed   and estimated 
E values
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Fig. 4  (continued)
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In which n is the number of data,  Pi and  Oi are considered 
as the predicted and observed value for  ith parameter of pan 
evaporation.

Results and discussion

In this study, capabilities of the Random Forest (RF) and 
Multilayer Perceptron (MLP) models and their optimized 
forms with GA are investigated in estimating pan evap-
oration by the usage of various stations. In the current 
research, seven stations (Ardabil, Sarein, Nir, Bileh Savar, 
Meshgin Shahr, Parsabad, and Khalkhal) are considered 
for pan evaporation prediction. Furthermore, there is no 
direct method to split training and testing datasets. For 
example, for developing the model, Deo et al. (2018) and 
Samadianfard et al. (2018, 2019a, b, 2020) implemented 
70% of their data, while Qasem et al. (2019) applied 67% 
and Zounemat-Kermani et al. (2019) used 80% of whole 
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data for training step. Accordingly, 70% of data is used as 
training, and the rest are applied for the testing part. In this 
research, the value of the pan evaporation in one station 
is considered as output, and the rest are input parameters. 
Using Ep of six stations, the Ep last station is estimated, 
and the precision of each model is examined. As shown 
in Table 2, the RF, MLP and the hybrid GA-RF and GA-
MLP methods are used for Ep estimation in each station. 
Additionally, Table 3 represents the pan evaporation value 
correlation coefficient among all stations.

Tables 4 and 5 demonstrate the parameters of RF, GA-RF, 
MLP and GA-MLP models that are utilized in the develop-
ment of models. In all of the RF models, Random Forest.
number_of_trees (A) is 100, Random Forest.maximal_depth 
(B) is 10, Random Forest.confidence (C) is 0.100, Random 
Forest.minimal_leaf_size (D) is 2, Random Forest.minimal_
size_for_split (E) is 4, Random Forest.number_of_preprun-
ing_alternatives (F) is 3, and Random Forest.subset_ratio (G) 
of 0.200 is utilized. Additionally, in all of the MLP models, 
Neural Net.training_cycles (A) is 200, Neural Net.learn-
ing_rate (B) is 0.0100, Neural Net.momentum (C) is 0.9000, 
Neural Net.error_epsilon (D) is 0.0001 and Neural Net.local_
random_seed (E) is 1,992. Furthermore, in the hybrid models, 
the genetic algorithm changed and improved all of the above-
mentioned values to increase the accuracy of estimation.

Table 6 shows the outcomes of the RF, GA-RF, MLP and 
GA-MLP models in Ep estimation for each station. Accord-
ing to Table 6, among all of the models which are calcu-
lated by the RF method, the RF-5 with CC of 0.8617, SI of 
0.2621, and WI of 0.9245 has high accuracy in Ep predic-
tion. Moreover, among all of the models which are calculated 
by the MLP method, the MLP-3 with CC of 0.8349, SI of 
0.2743, and WI of 0.9114 has suitable accuracy. In addition, 
when a genetic algorithm utilized as an optimizer, the perfor-
mance of all RF and MLP models, except MLP-6, increases. 
In hybrid models the Willmott's Index and Correlation 

Fig. 4  (continued)
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coefficient parameters are higher than standalone models. 
However, the GA-MLP-5 model with CC of 0.8704, SI of 
0.2539, and WI of 0.9212 creates better results when com-
pared with other ones. It is obvious that the genetic algorithm 

as an optimizer improve the performance of models in Ep 
prediction. This method decreases the SI parameter by 10% 
in the best model (GA-MLP-5). Among the studied sta-
tions, in hybrid models, Bileh Savar and Meshgin Shahr had 

Fig. 5  The scatter plots of 
observed   and estimated E values
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the best performance according to their error meters. Both 
GA-RF-4, GA-MLP-4 and GA-RF-5, GA-MLP-5 models 
provide almost same performances however, as GA-MLP-5 
can better capture the higher Ep value, it slightly outperforms 

GA-RF-4, GA-MLP-4 and GA-RF-5 models. Additionally, 
closer examination of Table 5 represents that the effect of the 
GA optimizer at RF model for pan evaporation forecasting at 
Khalkhal station was minimal.

Fig. 5  (continued)
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Fig. 5  (continued)
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The performance of the standalone and hybrid models is 
demonstrated in Fig. 4 for seven stations. From Fig. 4, it can 
be inferred that the genetic algorithm ameliorated the pre-
cision of the Ep estimation. Furthermore, scatter plots of 
observed and estimated values of pan evaporation for each sta-
tion are shown in Fig. 5 using RF, GA-RF, MLP and GA-MLP 
methods. Evident is that the RF-3 and MLP-5 models has high 
accuracy among other default models and the GA-RF-5 and 
GA-MLP-5 have the best performance in comparison with all 
models in prediction of Ep value. In Fig. 5 blue solid points is 
predicted E by RF, GA-RF, MLP and GA-MLP methods and 
estimated E, black solid line is bisector line (y = x), and red 
dotted line is trend line, in this figure, the higher the scatter of 
blue points around the black line, the higher the accuracy of 
the model. Based on Fig. 5, in both stations (Bileh Savar and 
Meshgin Shahr), hybrid GA-RF and GA-MLP models are in 
great agreement with the bisector line. However, almost all 
of the other models are below the 1:1 line and underestimate 
the Ep values. By and large, the GA-MLP-5 model slightly 
demonstrates precise results than GA-RF-5.

Using Taylor diagrams, the correlation and standard 
deviation values between estimated and observed pan 
evaporation are investigated. In Fig. 6, Taylor diagrams 
are presented for all RF, GA-RF, MLP and GA-MLP 
models. RMSE parameter in the diagram is defined as the 
distance from the reference point (green dot) to any other 
point. Therefore, the most accurate model is the minimum 
space between green and the correspondent dot (Taylor, 

2001). According to Fig. 6, the red point (GA-MLP-5) in 
the Meshgin Shahr station is the closest to the green point 
and has a minimum distance from the reference point. 
Therefore, it yields accurate results with minimum error 
in Ep estimation. Conclusively, it can be stated that in the 
case of lack of measured Ep data, especially in developing 
countries, it may be estimated using the corresponding val-
ues in the neighboring stations with acceptable accuracy.

Overall, GA-MLP-5 has superior results than all other 
models. Moreover, it should be noted that this study has 
some limitations. For instance, the gathered datasets in seven 
stations are for Ardabil province in Iran. Therefore, the stud-
ied places have almost the same climates. Hence, it would be 
better to use proposed techniques for various locations with 
diverse climates and examine the accuracy of new models. 
Additionally, using the same datasets, novel methods could 
be implemented for the extension of the study.

Sensitivity analysis

To better understand the impact of adjacent station on pre-
diction of Ep of target stations, SI evaluation parameter was 
used for various stations. To achieve this purpose, the GA-RF 
were utilized for sensitivity analysis to discover the most effec-
tive adjacent station on target stations The table appears to 
be showing the results of a sensitivity analysis for a GA-RF 
model. The Table 7 lists several target stations in the first 

Fig. 5  (continued)
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Fig. 6  The Taylor diagrams of 
observed   and estimated E values
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column and corresponding nearby stations at the top of each 
column. The "All station (SI)" row shows a baseline Scatter 
Index (SI) value for the GA-RF model when all nearby stations 
are included. Below this, there are rows that represent the new 
SI value after eliminating data from one of the nearby stations. 
Here's a more detailed analysis based on the provided table:

Ardabil as Target Station: The baseline SI when all sta-
tions are included is 0.3412. After eliminating data from 
each of the nearby stations one at a time, we see slight 
increases in the SI value, indicating a minor decrease in 
model accuracy. The largest increase in SI occurs when 
Sarein is eliminated, suggesting that Sarein's data is most 
important for predicting pan evaporation at Ardabil.
Sarein as Target Station: The baseline SI is 0.4498. The 
most significant impact is observed when the data from 
Ardabil is eliminated, which results in an SI of 0.4556, 
indicating that Ardabil has the most influence on the 
model's accuracy for Sarein.
Nir as Target Station: The baseline SI is 0.2584. The SI 
increases to 0.2736 when Sarein is eliminated, which is the 
highest change among the stations listed. This suggests that 
Sarein's data is quite influential on the predictions for Nir.
Bileh Savar as Target Station: The baseline SI is 0.2790. 
The highest SI observed after elimination is 0.2900 when 
Sarein is removed, hinting that Sarein's data contributes 
significantly to the accuracy for Bileh Savar.
Meshgin Shahr as Target Station: The baseline SI is 
0.2568. When Bileh Savar is eliminated, the SI increases 
the most to 0.2635, indicating that Bileh Savar's data has 
a substantial impact on Meshgin Shahr's predictions.
Parsabad as Target Station: The baseline SI is 0.4206. 
Eliminating Meshgin Shahr's data increases the SI to 
0.4228, which is the largest increase, suggesting Mesh-
gin Shahr's data is important for predictions at Parsabad.

Khalkhal as Target Station: The baseline SI is 0.2731. 
The highest increase in SI is to 0.2814 when Parsabad is 
eliminated, which means Parsabad's data has a notable 
influence on the model's accuracy for Khalkhal.

In summary, the table shows that for each target station, 
the exclusion of data from certain nearby stations causes 
a decrease in model accuracy, as indicated by the increase 
in SI values. This highlights the contribution of specific 
stations to the predictive power of the GA-RF model and 
helps identify which nearby stations' data are most valuable 
for accurate pan evaporation predictions at each target sta-
tion. Also, the Meshgin Shahr, Nir, Sarein, Parsabad, Bileh 
Savar, Bileh Savar and Parsabad are the most effective adja-
cent station to Ardabil, Sarein, Nir, Bileh Savar, Meshgin 
Shahr, Parsabad and Khalkhal stations, respectively.

Study limitations and future outlook

The study focuses on the application of Random Forest (RF) 
and Multilayer Perceptron (MLP) models integrated with 
the genetic algorithm (GA) for predicting pan evaporation 
at target stations using neighboring reference station data. 
The research demonstrates that the GA-MLP-5 model outper-
forms other models and highlights the importance of accurate 
estimation of evaporation in hydrological studies and water 
resource management. However, the study has limitations, 
such as the use of datasets from only seven stations in Ardabil 
province, Iran, and the need for further research in diverse 
climate conditions. In the future, it would be beneficial to 
expand the study to different locations with diverse climates 
to examine the accuracy of the proposed techniques. Addi-
tionally, the study could benefit from exploring novel meth-
ods for extending the research using the same datasets.

Table 7  The effect of removing an adjacent station in predicting the target station Ep

Target station Ardabil Sarein Nir Bileh Savar Meshgin Shahr Parsabad Khalkhal

All station (SI) 0.3412 0.4498 0.2584 0.2790 0.2568 0.4206 0.2731
Eliminate Sarein Ardabil Ardabil Ardabil Ardabil Ardabil Ardabil
SI 0.3451 0.4556 0.2628 0.2811 0.2618 0.4210 0.2793
Eliminate Nir Nir Sarein Sarein Sarein Sarein Sarein
SI 0.3453 0.4792 0.2736 0.2900 0.2571 0.4233 0.2745
Eliminate Bileh Savar Bileh Savar Bileh Savar Nir Nir Nir Nir
SI 0.3430 0.4503 0.2589 0.2817 0.2614 0.4239 0.2805
Eliminate Meshgin Shahr Meshgin Shahr Meshgin Shahr Meshgin Shahr Bileh Savar Bileh Savar Bileh Savar
SI 0.3472 0.4524 0.2652 0.2911 0.2635 0.4525 0.2782
Eliminate Parsabad Parsabad Parsabad Parsabad Parsabad Meshgin Shahr Meshgin Shahr
SI 0.3429 0.4500 0.2609 0.3071 0.2586 0.4228 0.2778
Eliminate Khalkhal Khalkhal Khalkhal Khalkhal Khalkhal Khalkhal Parsabad
SI 0.3459 0.4501 0.2650 0.2878 0.2572 0.4271 0.2814
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Conclusion

In this study, for estimating the pan evaporation in the tar-
get station by the usage of six available stations as input, 
the tree-based method (random Forest), multi-layer per-
ceptron and their hybrid form which is optimized by the 
genetic algorithm are utilized. For comparison of the mod-
els, three statistical indicators including Correlation coef-
ficient (CC), Scattered Index (SI), and Willmott's Index of 
agreement (WI) are used. Based on the obtained results, 
the RF-5 and MLP-3 exhibited better performance among 
other RF and MLP models in Ep estimation. As well as, 
hybrid models outperformed all default RF and MLP mod-
els, which indicates the high efficiency of GA to improve the 
results of machine learning methods. Furthermore, the GA-
MLP-5 model demonstrated the highest prediction preci-
sion compared with all other models with the CC of 0.8704, 
SI of 0.2539, and WI of 0.9212. Sensitivity analysis was 
performed using the GA-RF method to identify the most 
important neighbor station on the target station, which is an 
accurate method of introducing the most sensitive parame-
ters or stations in modeling. The results carried out by using 
hybrid models created better estimation with high potential 
in pan evaporation at the specific station, which can be uti-
lized from the hybrid models used to predict other mete-
orological parameters at other stations and water resource 
management issues. It is also possible to increase the quality 
of modeling by integrating GA with other machine learn-
ing methods. Conclusively, in the absence of Ep-dependent 
data, the Ep data of adjacent stations can be used. Conclu-
sively, the results carried out using hybrid models created 
better estimation with high potential in pan evaporation at 
the specific station.
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