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A B S T R A C T

Mobile charging provides a new energy replenishment technology for Wireless Rechargeable Sensor Network
(WRSN), where the Mobile Charger (MC) is employed for charging nodes sequentially according to the mobile
charging scheduling result, using node charging timeliness and quality of sensing coverage as the scheduling
criteria. Sensing coverage is a critical network property and has received more interest in recent research
studies in mobile charging scheduling in WRSN. As the network environment is usually uncertain and the
charging demands may change dynamically from time to time, online mobile charging scheduling is crucial,
but existing online approaches are mostly based on specific network models, which are difficult to obtain in
practical applications. In this paper, we propose a novel model-free deep reinforcement learning algorithm for
the Online Mobile Charging Scheduling with optimal Quality of Sensing Coverage (OMCS-QSC) problem in
WRSN, Multistage Exploration Deep Q-Network (MEDQN), where MC is designed as an agent to explore the
online charging schedules via a new multistage exploration strategy for maximizing the network QSC according
to the real-time network state. In addition, we also design a novel reward function to evaluate the MC charging
action via the real-time sensing coverage contributions of the nodes. Extensive simulations show that MEDQN
can reach the convergence state stably and is superior to existing online algorithms, especially in large-scale
WRSNs.
1. Introduction

Wireless Sensor Network (WSN) is composed of a large number
of sensor nodes spatially distributed for sensing the environment [1].
Due to its characteristics of low cost, scalability, self-organization dy-
namics, and fault tolerance, WSN is widely used in environmental
monitoring [2], medical care [3], elderly care services [4], intelligent
transportation [5] and manufacturing systems [6]. The limited net-
work lifetime is the primary barrier to developing WSNs. To address
this problem, researchers proposed the Wireless Rechargeable Sensor
Network (WRSN), where the sensor nodes can be charged via wireless
energy transfer.

Compared with the static charger in WRSN [7], using the Mobile
Charger (MC) to charge the sensor nodes is more flexible and effi-
cient [8]. Mobile charging scheduling is used to determine the charging
sequence of the nodes according to the network demands. According to
whether the MC charging sequence can be updated in time according to
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the real-time network state, existing mobile charging approaches can be
divided to two categories: offline charging and online charging. In the
offline approaches [9–16], before MC is ready to perform the charging
task, the mobile charging sequence has been determined according
to the known initial network state. However, the state and charging
demands of the network may change due to uncertain factors, so the
offline approaches are not applicable to this condition. The existing on-
line approaches effectively solve this challenge [17–22], where MC can
make charging decisions and adjust the charging sequence according to
the real-time network state.

Sensing coverage is a critical network property and determines net-
work credibility, and we evaluate the network coverage performance
via the Quality of Sensing Coverage (QSC) in practical applications.
When the network state is known and predictable, an offline mobile
charging algorithm was proposed to maximize the network QSC by
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optimizing the MC charging sequence [16]. However, the energy con-
sumption rate of each node changes dynamically, and the network
state (including the node’s remaining energy and network coverage
structure) is uncertain in dynamic WRSNs. If MC charges nodes still
in a determined charging sequence, most nodes will not be charged
in time and stop working, and the network QSC may be affected
negatively. Therefore, this paper studies the problem of Online Mobile
Charging Scheduling for optimal network QSC (OMCS-QSC), which
aims to maximize network QSC in the charging cycle by finding the
optimal mobile charging strategy according to the real-time network
state. The difficulties of OMCS-QSC are as follows: (1) as the energy
requirements of the sensor are dynamically changing under different
charging time steps, the sensing coverage contribution of the same
node and network charging demands cannot be accurately modeled;
(2) all nodes cannot be scheduled for charging under the limited
MC charging capability, how to select part of all nodes to charge to
maximize the network QSC is difficult; (3) MC must reserve the energy
for returning to the Charging Station (CS) under the limited battery
capacity, OMCS-QSC can be modeled as a dynamic extended Traveling
Salesman Problem (TSP) and is NP-complete in nature. Existing model-
based online algorithms lack the impact of future charging action on
network QSC in OMCS-QSC [23–25].

Reinforcement Learning (RL) is an essential branch of machine
learning and has received more attention recently [26,27]. As RL can
learn and improve the real-time action strategy through interaction
with the environment under the reward-punishment mechanism, and
considering the impact of future return on real-time actions while using
the approximate estimation method during the learning process, RL has
obvious advantages in real-time, dynamic and global optimal perfor-
mance [28,29]. This paper will solve the OMCS-QSC problem based on
RL. Since the representation of real-time network state in OMCS-QSC
is complex, Q-learning as the basis of RL, is unsuitable for OMCS-QSC
where the state–action function is fitted by a 𝑄-table. Introducing the
neural network to fit the state–action function of the complex network
state, Deep Reinforcement Learning (DRL) was presented, and the
effectiveness and efficiency of DRL have been demonstrated in dealing
with the decision problems of complex state spaces in dynamic envi-
ronments [30–33]. Therefore, based on the original Deep Q-Network
algorithm of DRL, we present a novel model-free Multistage Explo-
ration Deep Q-Network (MEDQN) algorithm for OMCS-QSC, where MC
is taken as the agent to explore the space of the charging strategy
iteratively via a new multistage exploration 𝜀𝑚 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy to
maximize the network QSC according to the real-time network state.

The main contributions of this paper are summarized as follows:

1. Considering the effect of MC charging capability on network
QSC in WRSNs, this paper studies the OMCS-QSC problem and
proposes a novel MEDQN algorithm to maximize the network
QSC by finding the optimal mobile charging strategy in the
charging cycle.

2. In MEDQN, we design a new multistage exploration 𝜀𝑚 − 𝑔𝑟𝑒𝑒𝑑𝑦
strategy by introducing two strategy thresholds 𝜀1𝑚 and 𝜀2𝑚, mak-
ing MC can select the current suboptimal actions with a certain
probability during the exploration to improve the MC explo-
ration efficiency.

3. A novel reward function with the charging penalty is designed
according to the real-time sensing coverage contribution of each
node to evaluate the MC charging action, which is defined as
the weighted sum of the network loss sensing coverage ratio, the
independent sensing coverage ratio and remaining energy ratio
of the selected node.

The rest of the paper is organized as follows: the related works are
introduced in Section 2. The system model and OMCS-QSC formulation
are described in Section 3. In Section 4, the MEDQN algorithm for
OMCS-QSC is presented. The performance of MEDQN is comparatively
2

analyzed and discussed in Section 5. Conclusions are given in Section 6.
2. Related work

Existing studies on MC mobile charging scheduling in WRSNs
mainly focus on MC charging performance and are divided to offline
and online approaches. In the offline mobile charging approaches, MC
charges nodes according to the definite charging sequence from the
initial state information. For example, Wei et al. [9] proposed a multi-
objective ant colony optimization algorithm to minimize average data
transmission delay. To optimize the charging time of nodes, Jiang
et al. [10] presented a quantum particle swarm optimization algorithm
and defined a secondary performance index for charging waiting time.
Srinivas et al. [11] proposed a hybrid optimization algorithm to reduce
the moving distance and maximize mobile charging efficiency. Liu
et al. [13] and Han et al. [14] presented a multi-node mobile charging
scheme where MC can charge nodes within a specific charging range
to reduce the number of off-working nodes. Xu et al. [15] determined
each MC’s independent closed charging path using multiple MCs in
the multi-node mobile charging method to improve overall charging
efficiency. Kan et al. [24] proposed an energy-recharging mechanism
based on network connectivity to maximize the network quality of cov-
erage. It initially constructed a mobile charging path by evaluating the
nodes that sent charging requests outside their coverage and network
connectivity contributions. In our previous work, the weighted sum of
the network sensing-coverage ratio and the node survival ratio was
taken as the new evaluation index, and we present an Improved Quan-
tum Particle Swarm Optimization (IQPSO) mobile charging sequence
algorithm to maximize the network QSC while considering both MC
charging and moving time in [16].

The nodes’ states change according to uncertain factors, MC up-
dates the real-time mobile charging strategy according to the real-time
network charging demands in the online mobile charging approaches.
Researchers have proposed a variety of online algorithms with differ-
ent mechanisms [17–20]. To maximize the network QSC in dynamic
WRSNs, Yu et al. [23] and Dande et al. [34] presented a coverage-
aware energy replenishment mechanism and a multi-node cost-effective
charging scheduling algorithm, respectively. Real-time coverage con-
tributions of each requested node and the benefits of chain-effect
recharging coverage were all considered. However, the chain-effect
recharging coverage benefit cannot be accurately estimated due to the
dynamic nodes’ energy consumption rates. Jiang et al. [25] considered
the problem of on-demand scheduling MCs to maximize the covering
utility, which quantifies the effectiveness of event monitoring, and
three heuristics were proposed, but this scheme ignores the carrying
capacity. As the network scale increases, existing heuristic algorithms
make it difficult to find the optimal mobile charging decision. For
example, in [20], some relatively important nodes with low energy
consumption were often ignored, resulting in a long off-working time
that reduced the network QSC. To overcome the problem that existing
algorithms lack global optimality, researchers have introduced RL to
generate the optimal mobile charging sequence in WRSNs.

RL is characterized by interacting with the environment in real time,
where the agent continuously learns according to a reward feedback
system that optimizes the action decision in the charging cycle [35].
Therefore, RL has shown great promise in the decision-making field of
the Markov decision process [27]. For example, La et al. [29] designed
a Q-learning algorithm to optimize the number of monitoring targets
and the charging time. Wei et al. [27] and Soni et al. [28] intro-
duced a charging path planning algorithm based on Q-learning that
improves MC charging efficiency and extends the network lifetime. DRL
is proposed with the neural networks to learn the multi-dimensional
network state. Cao et al. [30] proposed a DRL charging algorithm that
maximizes the sum of rewards collected by the MC under the constraint
of MC capacity. Jiang et al. [31] and Yang et al. [32] proposed an actor-
critic reinforcement learning algorithm to prolong the network lifetime
while minimizing the number of non-working nodes.
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Table 1
Comparison between literatures.

Online Sensing Survival Capacity
scheduling coverage of nodes of MC

[27,36] × × ✓ ×
[30] ✓ × × ✓

[31,32] ✓ × ✓ ✓

[24] × ✓ × ✓

[16] × ✓ ✓ ×
[25] ✓ ✓ × ×
[23,34] ✓ ✓ × ×
MEDQN ✓ ✓ ✓ ✓

Fig. 1. The online mobile charging model of WRSNs.

We summarized the limitations of existing works in Table 1. Dif-
ferent from existing works, considering the impact of MC’s charging
capability (including charging power and battery capacity) on the
network sensing coverage and node survival, we study the OMCS-QSC
problem and propose a novel MEDQN algorithm.

3. System model and problem formulation

3.1. System model

As shown in Fig. 1, the WRSN studied in this paper consists of
a Sink Node (SN) fixed in the center of the monitoring region, a
Charging Station (CS), a MC and 𝑁 rechargeable sensor nodes 𝑆 =
{

𝑠1, 𝑠2,… , 𝑠𝑁
}

. The location 𝑙𝑜𝑐𝑠𝑖 = (𝑥𝑠𝑖 , 𝑦𝑠𝑖 ) of the node 𝑠𝑖 is fixed
and known, 𝑖 ∈ (1, 𝑁), and the location set of all nodes is 𝐿𝑂𝐶 =
{𝑙𝑜𝑐𝑠1 , 𝑙𝑜𝑐𝑠2 ,… , 𝑙𝑜𝑐𝑠𝑁 }. SN can collect and process the real-time data
from all nodes; MC can collect the real-time charging requests and the
state information from all nodes, and then formulate the on-demand
charging sequence according to the real-time network state, finally
performing the charging task; CS is responsible for energizing MC. We
assume the network deployment scenario is barrier-free and accessible.
Table 2 summarizes the symbols used in this paper.

Definition 1 Charing Time Step (CTS): it is the step during which MC
should be assigned a node for charging operation.

In this paper, we assume that each node has the same function but
the energy consumption rate 𝑉𝑐𝑠 = {𝑣1𝑐𝑠,… , 𝑣𝑁𝑐𝑠}
(𝐽∕𝑠) and initial remaining energy 𝐸𝑖𝑛 = {𝑒1𝑖𝑛,… , 𝑒𝑁𝑖𝑛 }(𝑘𝐽 ). 𝑟𝑝 and 𝑒𝑚(𝑘𝐽 )
represent the charging request energy threshold percentage and the
battery capacity of each node, when the real-time remaining energy of
the node 𝑒𝑟 ≤ 𝑟𝑝𝑒𝑚, its charging request is sent to MC before the node
runs out of energy. If 𝑒𝑟 = 0, the node stops working and can resume
working after being charged by MC. The real-time remaining energy of
𝑠𝑖 in kth CTS is expressed as

𝑒𝑖𝑟(𝑘) =
{

𝑒𝑖𝑟(𝑘 − 1) − 𝑣𝑖𝑐𝑠𝑡𝑤(𝑘) 𝑙𝑖(𝑘) = 0 (1)
3

𝑒𝑚 𝑙𝑖(𝑘) = 1
Table 2
Symbolic descriptions.

Symbol Description

𝑅 Sensing coverage radius of nodes (m)
𝑁 Number of nodes
𝐿 Length of WRSN detection range (m)
𝐶𝐸 Capacity of experience pool
𝐷𝑠𝑖 Distance matrix between 𝑠𝑖 and other sensors (m)
ℎ𝑙 Number of hidden layers in the neural network
𝑙ℎ𝑙

Number of neurons in the hidden layer
𝑣𝑙 Travel energy consumption of MC (J/m)
𝑑 Moving distance of MC (m)
𝑒𝑏𝑎𝑐𝑘 Energy required for MC to return to CS (J)
𝑎𝐼 Area independently covered by single node (m2)
𝑎𝑚 Maximum coverage area of each node (m2)
𝑎𝑡𝑚 Maximum coverage area of WRSN (m2)
𝑎𝑙 Loss sensing coverage area of WRSN (m2)
𝑎𝑇𝑆𝐴 Total coverage area of all working nodes (m2)
𝐿𝑀𝐶 The location of MC

where 𝑙𝑖 = 0 means that 𝑠𝑖 is not selected to charge and 𝑙𝑖 = 1 indicates
that it is scheduled for charging in the kth CTS. 𝑡𝑤 is the total working
time of MC, specifically expressed as 𝑡𝑤(𝑘) = 𝑡𝑙(𝑘) + 𝑡𝑐 (𝑘) in Fig. 3,
where MC moving time is 𝑡𝑙(𝑘) = 𝑑(𝑘)∕𝑣𝑚 and its charging time is
𝑡𝑐 (𝑘) = (𝑒𝑚 − 𝑒𝑖𝑟(𝑘))∕𝑣𝑟, 𝑣𝑟 stands for the received power of nodes from
MC, 𝑣𝑚(𝑚∕𝑠) is the MC moving speed and 𝑑(𝑘) is the distance that
MC moves to 𝑠𝑖. Since MC cannot ignore the transmission loss during
wireless charging, we introduce the MC’s power transmission efficiency
𝜃𝑟, and 𝑣𝑟 = 𝜃𝑟𝑣𝑐 , 𝑣𝑐 (𝐽∕𝑠) is the MC’s charging power.

We also assume that MC can receive charging requests continuously
while performing the charging task; it can only charge one node at
a time and leave when fully charged. 𝑣𝑐 , 𝑣𝑚, 𝜃𝑟 and the consumption
rate per unit moving distance 𝑣𝑙(𝐽∕𝑚) of MC are all unchanged in the
charging cycle. Since this paper focuses more on the optimization of
MC charging decisions, we assume that the distance between MC and
nodes is close enough while MC is in the charging process, 𝜃𝑟 ≈ 1 and
𝑣𝑟 ≈ 𝑣𝑐 .

Definition 2 Charging Cycle: charging cycle is the process from MC
leaving CS to perform the charging task until returning to CS.

At the kth CTS, if MC chooses 𝑠𝑖, the real-time MC remaining energy
𝑒𝑀𝐶 (𝐽 ) is expressed as

𝑒𝑀𝐶 (𝑘) = 𝑒𝑀𝐶 (𝑘 − 1) − (𝑒𝑚 − 𝑒𝑖𝑟(𝑘 − 1)) − 𝑣𝑙𝑑(𝑘). (2)

In WRSNs with randomly distributed nodes, incomplete or redun-
dant sensing coverage will reduce the network QSC. We present a
random node distribution mechanism to avoid the nodes’ dense and
scattered deployment, where the area covered jointly with three nodes
will not be covered again by the fourth one. The specific process is
shown in Fig. 2.

The distribution of nodes leads to a complex intersecting coverage
of multiple nodes. Under the same CTS, selecting different nodes may
cause different changes in the network coverage structure. The network
Total Sensing-coverage Area (TSA) is the union of the sensing-coverage
areas of all sensor nodes, and it can be calculated based on the real-time
network state via the Monte Carlo method proposed in our previous
work [37].

In OMCS-QSC, MC starts from CS and moves across the nodes that
have sent charging requests in turn. Until the MC’s remaining energy is
insufficient, it returns to CS. If nodes cannot be charged by MC in time,
the coverage vulnerability will occur in WRSN, resulting in incomplete
network sensing information. In Fig. 3, taking four CTSs as an example,
the initial energy set of five nodes is 𝐸𝑖𝑛 = {10, 0, 20, 0, 30}, although
𝑒2𝑖𝑛 = 𝑒4𝑖𝑛, but it can be seen intuitively that the independent sensing area
of the node 𝑎2𝐼 > 𝑎4𝐼 , so the sensing coverage contribution of 𝑠2 is greater
than 𝑠4, charging 𝑠2 is the wise decision. Although 𝑠4 stops working
first, to ensure the optimal network sensing-coverage performance in
the charging cycle, 𝑠 should be charged last.
4
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Fig. 2. Flow chart of the node distribution mechanism.

Fig. 3. Example of four CTSs in OMCS-QSC.

3.2. The formulation of OMCS-QSC

We formulate OMCS-QSC as a dynamic extended TSP, and it is also
a nonlinear discrete variable optimization problem. The network QSC is
evaluated by the weighted sum of the network Sensing-coverage Ratio
and Node-survival Ratio (SRNR), expressed as 𝑆𝑅𝑁𝑅(𝑘) = 𝛿𝑝𝑐

𝑎𝑇𝑆𝐴(𝑘)
𝑎𝑡𝑚

+

𝛿𝑤𝑛
𝑁−𝑙𝑠(𝑘)

𝑁 , where 𝛿𝑝𝑐 and 𝛿𝑤𝑛 are the weight coefficients of network
sensing-coverage and node survival, respectively, 𝛿𝑝𝑐 + 𝛿𝑤𝑛 = 1, 𝛿𝑝𝑐 ∈
(0, 1) and 𝛿 ∈ (0, 1); 𝑎 represents the maximum coverage area of
4

𝑤𝑛 𝑡𝑚
Fig. 4. Structure of the evaluation network 𝑁𝑒𝑣𝑙 .

WRSN, and the sensing-coverage ratio is the ratio of the real-time area
covered by WRSN to 𝑎𝑡𝑚; 𝑙𝑠 is the number of off-working nodes. The
average of the sum of SRNR for all CTSs in the charging cycle is defined
as the network QSC, and maximizing the network QSC is the goal
of OMCS-QSC. Therefore, the objective function of OMCS-QSC can be
formalized as

𝑀𝑎𝑥 𝑄𝑆𝐶 = (
𝐾
∑

𝑘=1
𝑆𝑅𝑁𝑅(𝑘))∕𝐾

s.t. 𝑒𝑖𝑟(𝑘 − 1) + 𝑡𝑐 (𝑘)𝑣𝑟 = 𝑒𝑚
𝐾
∑

𝑘=1

(

𝑣𝑙𝑑(𝑘) + 𝑣𝑐 𝑡𝑐 (𝑘)
)

+ 𝑒𝑏𝑎𝑐𝑘(𝑘) ≤ 𝐸𝑚

(3)

where 𝐾 represents the total number of charging decisions in the
charging cycle. The constraints of OMCS-QSC are as follows:

1. The sum of the remaining energy of nodes and the electricity
supplemented by MC should be equal to the node’s battery 𝑒𝑚.

2. The sum of energy supplemented to all nodes and moving energy
cannot exceed maximum MC’s battery capacity 𝐸𝑚(𝑘𝐽 ), the real-
time MC’s remaining energy should be greater than or equal to
the real-time energy required by MC to return CS.

Different from the extended TSP in [16], MC may charge different
nodes under the constraints of MC battery capacity in the charging
cycle in OMCS-QSC. The particular case of OMCS-QSC has been proven
to be NP-complete, where the MC battery capacity is large enough
and the charging power of each node 𝑣𝑐𝑠 is unchanged in the charg-
ing cycle [16]. Therefore, it can be inferred that OMCS-QSC is also
NP-complete.

4. The MEDQN algorithm for OMCS-QSC

4.1. The details of MEDQN

MEDQN consists of an environment state space 𝑋, an agent, and
its action space 𝑈 . At the kth CTS, the agent performs an action 𝑢𝑘 on
state 𝑥𝑘, which transfers to 𝑥𝑘+1, and the environment returns a reward
𝑟𝑘 to the agent. The agent aims to learn an optimal mobile charging
strategy to maximize total rewards. Under each state 𝑥, the state–
action function value 𝑄𝑒𝑣𝑙(𝑥, 𝑢) is the return expectation of a charging
action (charging a node) at the current WRSN state. While continuously
exploring the environment, agents constantly learn and update 𝑄𝑒𝑣𝑙,
which is represented by an evaluation neural network 𝑁𝑒𝑣𝑙 and shown
in Fig. 4. To solve the OMCS-QSC problem, we set up MEDQN first.

1. Agent: it is the ‘brain’ of exploratory learning in the space of
mobile charging strategies and is set to MC.
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2. State: it is obtained by the agent by observing the environment
and consists of the state of MC and network nodes. Considering
the effects of the real-time remaining energy and energy con-
sumption rates of nodes and the real-time location and remain-
ing energy of MC, it is represented as 𝑥 = {𝐸𝑟, 𝑉𝑐𝑠, 𝐿𝑀𝐶 , 𝑒𝑀𝐶}.

3. Action: it is the charging action of MC, which represents the
selection for charging nodes, 𝑈 = {𝑢|𝑢 = (1, 2,… , 𝑁 + 1)} is the
action space, 𝑢 = 𝑁 + 1 is the action returning to CS and others
represent the label of nodes in WRSN.

4. Reward: it is the immediate feedback to evaluate the actions of
the agent. Since the reward is represented as the SRNR at each
CTS, it lacks the penalty of the charging action, resulting in an
infinite loop between several nodes with the larger independent
sensing area 𝑎𝐼 . Differently, considering the sensing coverage
contribution of MC charging action and the impact of nodes’
remaining energy on the network QSC, we design a novel reward
function 𝑟𝑘 = 𝑎𝐼 (𝑘)∕𝑎𝑚 − 𝑎𝑙(𝑘)∕𝑎𝑡𝑚 − 𝛽𝑒𝑟(𝑘)∕𝑒𝑚, where 𝛽 is the
reward penalty factor used to constrain MC charging decisions,
𝛽 > 1, it means that the node’s remaining energy has a stronger
ability to constrain the MC charging decisions than the network
real-time loss sensing coverage. Selecting the nodes with the
lower remaining energy 𝑒𝑟, the loss sensing coverage area of
WRSN 𝑎𝑙 and the larger 𝑎𝐼 is evaluated as more reasonable, and
MC obtains a larger positive reward.

5. Strategy: it is the mapping of the relation between states and
actions. Different from the traditional off-line 𝜀−𝑔𝑟𝑒𝑒𝑑𝑦 strategy,
which makes MC only decide between the current optimal and
random actions in the exploration phase, we designed an off-
line multistage exploration 𝜀𝑚 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy for OMCS-QSC
by introducing the other two thresholds 𝜀1𝑚 and 𝜀2𝑚, where MC
can select the current suboptimal and sub-suboptimal actions
with a certain probability during the exploration to improve
the MC exploration performance. In the exploration phase, three
initial thresholds are all large, and MC has a high probability of
charging nodes randomly to achieve the purpose of exploration.
When the exploration steps increase, 𝜀𝑚 gradually decreases,
and nodes are selected with the best 𝑄𝑒𝑣𝑙 value to obtain the
maximum total rewards. The detailed 𝜀𝑚 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy is
introduced in Algorithm 1.

MC aims to learn the optimal mobile charging strategy 𝜋∗ to maxi-
mize the total rewards, then gets the real-time optimal mobile charging
sequence 𝛷∗. We use temporal difference simulation and generalized
policy iteration method to update the 𝑄𝑒𝑣𝑙 function. First, estimate the

𝑒𝑣𝑙 function value according to the given current action strategy; after
btaining the 𝑄𝑒𝑣𝑙 value, update the action strategy in turn. At the kth
TS state transition of the g th iteration, when 𝑥𝑘 ∈ 𝑋 and 𝑢𝑘 ∈ 𝑈 are
atisfied, the 𝑄𝑒𝑣𝑙 function update is as follows

𝜋
𝑔+1,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) = (1 − 𝛼)𝑄𝜋

𝑔,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) + 𝛼(𝑄′ −𝑄𝜋
𝑔,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘)) (4)

𝑄′ = 𝑟𝑘 + 𝛾max
𝑢𝑘+1

𝑄𝜋
𝑔,𝑒𝑣𝑙(𝑥𝑘+1, 𝑢𝑘+1) (5)

𝜋𝑔+1(𝑥𝑘+1) = argmax
𝑢𝑘+1

𝑄𝜋
𝑔,𝑒𝑣𝑙(𝑥𝑘+1, 𝑢𝑘+1) (6)

where 𝛼 is the learning rate, 𝛾 is the return discount factor. As the real-
time network demands may change dynamically, the energy consump-
tion of nodes is uncertain. Therefore, MC may continuously explore
the new network state, so the 𝑁𝑒𝑣𝑙 training results oscillate. MEDQN
sets delayed updating to improve the stability of the training of 𝑁𝑒𝑣𝑙
by building a target function 𝑄𝑡𝑎𝑟 via the target neural network 𝑁𝑡𝑎𝑟.
𝑁𝑒𝑣𝑙 and 𝑁𝑡𝑎𝑟 have the same structure but play slightly different roles.
𝑁𝑒𝑣𝑙 is responsible for making charging decisions via the approximated
5

𝑄𝑒𝑣𝑙(𝑥, 𝑢); while 𝑁𝑡𝑎𝑟 is used to calculate the target value 𝑄𝑡𝑎𝑟(𝑥𝑘, 𝑢𝑘) =
Algorithm 1 𝜀𝑚 − 𝑔𝑟𝑒𝑒𝑑𝑦 strategy for OMCS-QSC.

Require: 𝑁𝑒𝑣𝑙, 𝜀𝑚, 𝜀1𝑚, 𝜀2𝑚, 𝑉𝑐𝑠(𝑘), 𝐸𝑟(𝑘), 𝐿𝑀𝐶 (𝑘) and 𝑒𝑀𝐶 (𝑘)
nsure: Real-time charging action 𝑢(𝑘)
1: 𝑥𝑘 = {𝐸𝑟(𝑘), 𝑉𝑐𝑠(𝑘), 𝐿𝑀𝐶 (𝑘), 𝑒𝑀𝐶 (𝑘)}
2: 𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑈 ) is the approximate return of all actions
3: 𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑈 ) = 𝑁𝑒𝑣𝑙(𝑥𝑘)
4: 𝑛 = argmax(𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑈 ))
5: 𝑈1 is the action space where 𝑈 removes 𝑛
6: 𝑛1 = argmax(𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑈1))
7: 𝑈2 is the action space where 𝑈1 remove 𝑛1 and 𝑛
8: 𝑛2 = argmax(𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑈2))
9: Randomly generate a number 𝑙 from 0 to 1

10: if 𝑙 < 𝜀𝑚 then
11: 𝑢𝑘 = 𝑛1

12: if 𝑙 < 𝜀1𝑚 then
13: 𝑢𝑘 = 𝑛2

14: if 𝑙 < 𝜀2𝑚 then
15: MC selects 𝑠𝑛0 to charge randomly
16: 𝑢𝑘 = 𝑛0

17: end if
18: end if
19: else
20: 𝑢𝑘 = 𝑛
21: end if
22: Decrease 𝜀𝑚 as the iteration steps increases

𝑟𝑘 + 𝛾max
𝑢𝑘

𝑄𝑡𝑎𝑟(𝑥𝑘, 𝑢𝑘) to stabilize the process of 𝑄𝑒𝑣𝑙 iteration. By
introducing 𝑄′ = 𝑄𝑡𝑎𝑟 into (4), we can obtain

𝑄𝜋
𝑔+1,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) = (1 − 𝛼)𝑄𝜋

𝑔,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) + 𝛼(𝑄𝑡𝑎𝑟(𝑥𝑘, 𝑢𝑘)

−𝑄𝜋
𝑔,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘)). (7)

If we want to determine the optimal charging strategy 𝜋∗(𝑥𝑘), the
optimal 𝑄∗

𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) must be obtained firstly. Therefore, the 𝑄∗
𝑒𝑣𝑙 with

the convergent network parameter 𝜃∗𝑒𝑣𝑙 satisfies 𝑄∗
𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) = 𝑟𝑘 +

max
𝑢𝑘+1

𝑄𝜋∗
𝑒𝑣𝑙(𝑥𝑘+1, 𝑢𝑘+1) and 𝜋∗(𝑥𝑘) = argmax

𝑢𝑘
𝑄∗

𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘). The specific
parameter 𝜃𝑒𝑣𝑙 of 𝑁𝑒𝑣𝑙 are updated as

𝜃𝑔+1,𝑒𝑣𝑙 ← 𝜃𝑔,𝑒𝑣𝑙 − 𝛼∇𝜃𝑔,𝑒𝑣𝑙 (𝑄𝑔,𝑡𝑎𝑟(𝑥𝑘, 𝑢𝑘) −𝑄𝑔,𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘))
2 (8)

Different from the update method of 𝜃𝑒𝑣𝑙, the target function pa-
rameter 𝜃𝑡𝑎𝑟 is copied from 𝜃𝑒𝑣𝑙 after a fixed number 𝐶 iterations.
The network state of adjacent CTSs is correlated. MEDQN builds an
experience replay mechanism via a large-capacity 𝐶𝐸 experience pool,
which stores and updates the interaction state information of WRSN
after each 𝑢𝑘. During the 𝑁𝑒𝑣𝑙 training process, MC randomly selects 𝑚
groups of samples from the experience pool and can simultaneously
learn from past and current experiences to address the problem of
correlated states. As shown in Fig. 5, we show the structure of the
MEDQN. In kth CTS, MC adopts the 𝜀𝑚−𝑔𝑟𝑒𝑒𝑑𝑦 charging strategy under
the current network state 𝑥𝑘, executes 𝑢𝑘 charge action and gets 𝑥𝑘+1
and 𝑟𝑘. MC stores the interaction state information in the experience
pool. During 𝑁𝑒𝑣𝑙 training, MC randomly selects samples to update
parameters 𝜃𝑒𝑣𝑙 via the experience replay mechanism. When the 𝜃𝑒𝑣𝑙
error reaches the minimum training error 𝓁𝑒𝑣𝑙 or the number of MC
explorations reaches the maximum number of iterations 𝐺, the optimal
charging strategy is obtained. The pseudocode of MEDQN is shown in
Algorithm 2.

The theoretical convergence analysis and the derivation of MEDQN
are described in [38], which we will not elaborate in this paper.
To verify the convergence of MEDQN for OMCS-QSC, we compare
the convergence performance of MEDQN and original DQN via the
Matlab2021b simulation software. For the two network structures of

MEDQN and DQN, we used a fully connected feedforward neural



Ad Hoc Networks 156 (2024) 103431J. Li et al.

w
b
i
M
c
w
M

r
M
u
Q
t
c
t
o
t
O

4

e

c
r
t
i

Downloaded from https://iranpaper.ir
https://www.tarjomano.com https://www.tarjomano.com
Algorithm 2 MEDQN for OMCS-QSC.
Require: Initialized 𝑁𝑒𝑣𝑙, 𝑁𝑡𝑎𝑟, 𝜃𝑒𝑣𝑙, 𝜃𝑡𝑎𝑟, 𝐺, 𝐿𝑂𝐶, 𝛼, 𝛾, 𝜀𝑚, 𝜋, 𝑚, 𝐶,

𝑉𝑐𝑠(𝑘), 𝐸𝑟(𝑘), 𝐿𝑀𝐶 (𝑘), 𝑒𝑀𝐶 (𝑘)
Ensure: Well trained 𝑄∗

𝑒𝑣𝑙 and 𝜋∗

1: for 𝑔 = 1 ∶ 𝐺 do
2: k=1
3: while 𝑘 ≥ 0 do
4: Obtain 𝑢𝑘 from Algorithm. 1
5: 𝑥𝑘+1, 𝑟𝑘, 𝑒𝑀𝐶 (𝑘) and 𝑒𝑏𝑎𝑐𝑘(𝑘) are generated
6: Store {𝑥𝑘, 𝑢𝑘, 𝑥𝑘+1, 𝑟𝑘} into the experience pool
7: Randomly sample 𝑚 group experience
8: if 𝑒𝑀𝐶 (𝑘) ≤ 𝑒𝑏𝑎𝑐𝑘(𝑘) then
9: 𝑄𝜋

𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) = 𝑟𝑘
10: Train 𝑁𝑒𝑣𝑙 to update 𝜃𝑒𝑣𝑙
11: Break
12: else
13: 𝑄𝑒𝑣𝑙(𝑥𝑘, 𝑢𝑘) = 𝑟𝑘 + 𝛾max

𝑢𝑘+1
𝑄𝜋

𝑡𝑎𝑟(𝑥𝑘+1, 𝑢𝑘+1)

14: Train 𝑁𝑒𝑣𝑙 to update 𝜃𝑒𝑣𝑙
15: end if
16: if 𝑔 = 𝐶 then
17: 𝑁𝑡𝑎𝑟 = 𝑁𝑒𝑣𝑙
18: end if
19: 𝑥𝑘 = 𝑥𝑘+1
20: 𝐿𝑀𝐶 (𝑘) = 𝑙𝑜𝑐𝑢𝑘
21: 𝐸𝑟(𝑘) = 𝐸𝑟(𝑘 + 1)
22: 𝑘 = 𝑘 + 1
23: end while
24: if The error of training 𝜃𝑒𝑣𝑙 drops to 𝓁𝑒𝑣𝑙 then
25: Break
26: end if
27: end for
28: We can obtain the optimal 𝑄∗

𝑒𝑣𝑙 and 𝜋∗

network with ℎ𝑙 hidden layers, which contain 𝑙ℎ𝑙 neurons. As shown in
Fig. 6, under the initialization parameters, the total rewards of MEDQN
can converge from −61.23 to about 14.5 in about 3000 iteration steps,

hich verifies the convergence of MEDQN. The total reward obtained
y the original DQN can converge from −32.84 to about 8 before 3000
terations, and its convergence trend is relatively smooth. In contrast,
EDQN has better performance for OMCS-QSC and can make better-

harging decisions than the original DQN to optimize the network QSC,
hich demonstrates that making changes to the exploration strategy in
EDQN is effective.

To verify the superiority of MEDQN compared with offline algo-
ithms in responding to dynamic changes in network state, we compare
EDQN with the offline IQPSO algorithm [16] in terms of network QSC

nder different MC charging powers. As shown in Fig. 7, the network
SC obtained by the offline algorithm is always lower than that of

he online MEDQN and original DQN algorithms under different MC
harging powers, where MEDQN is superior to others. The reason is
hat the charging sequences generated by the offline algorithm based
n the initial network state and cannot be adjusted in time according
o changes in the network, so the offline algorithm is unsuitable for
MCS-QSC, and the superiority of MEDQN is demonstrated.

.2. Time complexity

We calculate the time complexity of MEDQN from two aspects:
nvironment interaction and training iteration.

In environment interaction, MEDQN needs to make charging de-
isions for 𝐾 CTSs, observe the network’s state transition and collect
ewards. In addition, MEDQN can store the 𝐾 exploration samples into
he experience pool for training. Therefore, the time complexity of
nteracting with the environment is usually 𝑂(𝐾).
6

Table 3
Network environment simulation parameters.

Parameters Value Parameters Value

𝐿 100 𝑣𝑐𝑠 0.2 ∼ 1.8
𝑅 6 𝛿𝑝𝑐 0.8
𝑁 50 𝑒𝑚 144
𝐸𝑖𝑛 43.2 ∼ 144 𝛿𝑤𝑛 0.2
𝐺 5000 𝑣𝑚 5
𝛼 0.5 𝐸𝑚 72 000
𝑣𝑐 40 𝜀𝑚 0.999
𝜀1𝑚 0.9𝜀𝑚 𝜀2𝑚 0.8𝜀𝑚
𝛾 0.97 𝑣𝑙 10
𝛽 2.2 𝑟𝑝 0.3
m 1000 𝐶𝐸 5000
𝓁𝑒𝑣𝑙 0.00001 𝐶 50
ℎ𝑙 2 𝑙ℎ𝑙

2𝑁 + 2

Table 4
Comparison of different 𝛼.

0.1 0.2 0.3 0.4 0.5

QSC 0.893 0.891 0.892 0.891 0.916
TRs −0.512 −5.138 −4.794 −3.945 10.02
SCR 0.899 0.896 0.895 0.894 0.924
NONs 6.696 6.386 5.886 6.179 5.512

0.6 0.7 0.8 0.9

QSC 0.914 0.904 0.912 0.898
TRs 8.251 8.065 6.212 3.563
SCR 0.921 0.911 0.919 0.904
NONs 5.799 6.037 5.845 6.114

In the training iteration of MEDQN, the evaluation 𝑁𝑒𝑣𝑙 needs to
train 𝐺 times and randomly select 𝑚 samples from the experience pool.
As 𝑁𝑒𝑣𝑙 has ℎ𝑙 hidden layers and each layer has 𝑙ℎ𝑙 neurons, the time
complexity of 𝑁𝑒𝑣𝑙 training is 𝑂(𝐺ℎ𝑙𝑙ℎ𝑙𝑚). The parameter 𝜃𝑡𝑎𝑟 of the
target 𝑁𝑡𝑎𝑟 is copied from 𝑁𝑒𝑣𝑙 after 𝐶 iterations, the time complexity of
𝑁𝑡𝑎𝑟 updating is 𝑂(𝐺∕𝐶). Therefore, the time complexity of the training
iteration is usually 𝑂(𝐺ℎ𝑙𝑙ℎ𝑙𝑚 + (𝐺ℎ𝑙∕𝐶)). In summary, the total time
complexity of MEDQN can be estimated as 𝑂(𝐺ℎ𝑙𝑙ℎ𝑙𝑚 + (𝐺ℎ𝑙∕𝐶) +𝐾).

4.3. Parameter adjustment

Parameters of MEDQN will directly affect the algorithm perfor-
mance and stability, so their adjustments are essential for OMCS-QSC.
This section will use the comparison method to find the most suitable
learning rate, return discount factor, and reward penalty factor for
OMCS-QSC, respectively.

4.3.1. Learning rate
Learning rate 𝛼 is a critical parameter that affects the learning

step size and convergence stability of MEDQN. If the value of 𝛼 is
unchanged, MEDQN will fluctuate violently and converge slowly during
training. Therefore, we will find the optimal 𝛼 in this part for OMCS-
QSC. The specific reduction strategy of 𝛼 is 𝛼𝑔 = 𝛼𝑔−1 − 𝑣𝛼(𝛼𝑔−1∕𝛼),
where 𝑣𝛼 is the descent rate. We compared the network QSC and
other indexes (Total Rewards (TRs), Sensing Coverage Ratio (SCR) and
the Number of Off-working Nodes (NONs)) of different 𝛼 in the same
network environment (shown in Table 3).

Table 4 shows MC has the best learning effect for the optimal
charging strategy when 𝛼 = 0.5, the TRs is about 10.02, and the network
QSC is about 0.9155. When 𝛼 < 0.5, TRs gradually decreases as 𝛼
decreases. Because 𝛼 is small, MC’s exploration is incomplete within
𝐺, and the optimal mobile charging strategy cannot be learned. When
𝛼 > 0.55, the continual increase of 𝛼 accelerates the learning speed.
However, there are large fluctuations when the TRs converge to about
8. For example, for 𝛼 = 0.9, the last learning rate of MC’s exploration
𝛼5000 is still around 0.18, and the learning step size is too large to
achieve stable convergence at the end of the exploring.
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Fig. 5. The MEDQN structure for OMCS-QSC.
Fig. 6. Comparison of iterative convergence between MEDQN and original DQN.

Fig. 7. Comparison of online and offline algorithms in terms of the network QSC by
different MC charging powers.
7

Table 5
Comparison of different 𝛾.

0.91 0.92 0.93 0.94 0.95

QSC 0.898 0.904 0.902 0.885 0.907
TRs 5.43 3.252 7.70 4.940 8.40
SCR 0.903 0.912 0.907 0.889 0.912
NONs 5.921 6.388 5.806 6.578 5.623

0.96 0.97 0.98 0.99

QSC 0.906 0.911 0.903 0.887
TRs 5.40 9.18 7.15 −1.37
SCR 0.912 0.916 0.909 0.892
NONs 5.929 5.643 5.899 6.207

4.3.2. Return discount factor
The reward is the only feedback after the agent interacts with the

environment and is the basis for the agent’s learning. 𝛾 determines MC’s
emphasis on the return of future charging actions and directly affects
the learning quality of the optimal mobile charging strategy. In this
part, we compare the effects of different 𝛾 on the TRs of MEDQN and
find the optimal 𝛾 for OMCS-QSC.

Table 5 shows that 𝛾 = 0.97 can obtain the largest TRs of about
9.18 and the optimal network QSC of about 0.911. From (4) and (5),
𝛾 decreases exponentially in the MC exploration progresses. MC only
focuses on the real-time 𝑟𝑁 until 𝛾 = 0. The goal of MC is to ‘think ahead
and globally’ and learn the global optimal charging strategy. When
𝛾 ≤ 0.97, the future return has little influence on the current action,
MC cannot accurately estimate the 𝑄 − 𝑒𝑣𝑙 function, thus decreasing
TRs. Theoretically, NONs decreases, and QSC increases. When 𝛾 = 0.95,
NONs is the lowest, as well as TRs and SCR. When 𝛾 ≥ 0.97, MC
becomes cautious about future charging steps, which may limit the
learning vision of MEDQN.

4.3.3. Reward penalty factor
In the reward setting of MEDQN, as the node’s remaining energy

directly affects the node survival rate, the reward penalty factor 𝛽
is vital in evaluating MC charging action. In this part, we compare
the effects of different 𝛽 on the performance of MEDQN and find the
optimal 𝛽 for OMCS-QSC. As shown in Table 6, when 𝛽 increases from 1
to 2, TRs generally shows an upward trend, from about −11.24 to about
9.384. However, as 𝛽 keeps increasing, TRs decreases, finally dropping
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Table 6
Comparison of different 𝛽.

1 1.2 1.4 1.6 1.8

QSC 0.861 0.876 0.862 0.871 0.874
TRs −11.24 1.031 1.976 0.215 7.038
SCR 0.867 0.883 0.868 0.877 0.879
NONs 8.364 7.641 7.897 7.808 7.369

2 2.2 2.4 2.6

QSC 0.877 0.884 0.862 0.858
TRs 9.384 8.469 8.204 −5.645
SCR 0.881 0.890 0.864 0.860
NONs 9.384 8.469 8.204 8.645

to −5.645 at 𝛽 = 2.6. It is worth noting that when 𝛽 = 2.2, TRs is about
8.469 and not the largest, but the network QSC is optimal. When 𝛽 ≤ 2,
there is a lesser punishment on 𝑒𝑟, and MC cannot charge the nodes with
a larger contribution to the network, resulting in a lower network QSC.

In summary, we should reasonably choose different 𝛼, 𝛾 and 𝛽
according to the needs of different problems, respectively, to reduce the
fluctuation of the state–action value function in iterations, improve the
agent’s exploration efficiency and avoid the ‘myopia’ and ‘hyperopia’
of the agent.

5. Comparative simulation analysis

In this section, we will study the effects on network QSC of net-
work scale, charging request energy threshold percentage, MC charging
power, MC battery capacity and nodes’ battery capacity, respectively.
To evaluate the proposed MEDQN algorithm, we compare MEDQN with
other four online algorithms, including the original DQN algorithm, and
we run each experiment 20 times and take the average value as the final
experimental result.

5.1. Simulation details

We assumed that 50 nodes are randomly and uniformly distributed
in a fixed (100 m×100 m) 2D monitoring region. Each node is powered
by a 3.7 V∕450 mAh alkaline rechargeable battery with the capacity
𝑒𝑚 = 3.7 V×0.45 A×3600 s×24 h = 144 kJ. The initial residual energy 𝑒𝑖𝑛
of each node is randomly generated between 43.2 kJ∕s and 144 kJ∕s, and
the energy consumption rate 𝑣𝑐𝑠 of each node is randomly generated
between 0.2 J∕s and 1.8 J∕s under each CTS. MC performs the charging
task when one of the nodes in WRSN sends the charging request to MC.
MC battery capacity 𝐸𝑚 is limited and set at 𝑁𝑒𝑚 = 72000. In addition,
the MC moving speed 𝑣𝑚 is set at 5 m∕s, the MC charging power 𝑣𝑐 is set
at 40 J∕s, and the energy consumption rate of the moving unit distance
𝑣𝑙 is set at 10 J∕m. More simulation parameters are shown in Table 3.
We implement the learning algorithm in Matlab2021b software on the
workstation with a quad-core 3.1 GHz CPU and four NVIDIA GeForce
GTX 3080.

5.2. Comparison algorithms

This section compares the performance of MEDQN with the Nearest-
Job-Next with Preemption (NJNP) [17] and Temporal–Spatial Charg-
ing scheduling Algorithm (TSCA) [20], where NJNP finds the nearest
requested charging node in space as the next charging point and opti-
mizes the charging efficiency by saving mobile energy consumption;
TSCA firstly builds a mobile charging sequence for the nodes that
have sent charging requests, then it deletes inefficient nodes based
on the real-time mobile efficiency value (𝑎𝐼 (𝑘)∕𝑑(𝑘)) and finally adds
nodes with more significant sensing coverage contributions considering
the coverage efficiency value of real-time nodes (𝑎𝐼 (𝑘)∕𝑒𝑟(𝑘)). Because
the sensing coverage contribution of each node will affect network
QSC, we also designed a comparison Maximum Sensing Contribution
8

Fig. 8. Different network scales.

Fig. 9. Comparison of five algorithms in terms of the network QSC by deploying
different numbers of nodes and charging request energy threshold percentages.

Greedy (MSCG) algorithm. MSCG sorts the real-time 𝑟𝑘 = 𝑎𝐼 (𝑘)∕𝑎𝑚 −
𝛽𝑒𝑟(𝑘)∕𝑒𝑚 − 𝑎𝑙(𝑘)∕𝑎𝑡𝑚 of all nodes with charging requests from large to
small and continuously charges the node in the contribution sequence.
To highlight the advantages of MEDQN, we also compared it with the
original DQN algorithm.

5.3. Comparison against different network scales

Within the same network monitoring region, increasing the number
of nodes 𝑁 directly affects the MC mobile charging decision and brings
charging pressure to MC. In this section, we analyze the changes in
network QSC for different 𝑁 , charging request energy threshold per-
centages and MC charging powers. The specific random distributions
of different 𝑁 are shown in Fig. 8.

As shown in Figs. 9 and 10, as 𝑁 increases under the same 𝑟𝑝,
the network QSCs of all algorithms almost linearly decrease. As MC
charging power is limited, the larger 𝑁 , the more off-working nodes
that cannot be charged in time due to energy depletion during MC
charging, and the lower node survival ratio. In Fig. 9, as 𝑟𝑝 increases
under the same 𝑁 , the initial remaining energy of all nodes is higher,
and the overall working time of the network increases, MC has a high
probability of charging the node with the lowest energy. Therefore, the
network QSC of all algorithms improves.

As shown in Fig. 10, the network QSCs of five algorithms have the
same increasing trend with the increase of 𝑣𝑐 . Due to 𝑡𝑐 = (𝑒𝑚 − 𝑒𝑟)∕𝑣𝑟,
an increase of 𝑣𝑐 reduces 𝑡𝑐 , increase the number of charged nodes,
improves the survival rate of nodes and sensing coverage ratio of
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Fig. 10. Comparison of five algorithms in terms of the network QSC by deploying
different numbers of nodes and charging powers.

Fig. 11. Comparison of five algorithms in terms of the network QSC by deploying
different MC carrying capacities and charging powers.

WRSN. When 𝑣𝑐 is close to or greater than 𝑁 , MC charging capability
can almost meet the overall energy consumption rate of WRSN, and
WRSN may achieve the optimal network QSC via a reasonable charging
strategy. Summarizing the comparison above, MEDQN is superior to
other algorithms in optimizing network QSC.

5.4. Comparison against different MC battery capacities

MC battery capacity affects the charging cycle and the number of
charging nodes. In this part, we analyze the changes in network QSC
of five algorithms for different MC battery capacities 𝐸𝑚, different MC
charging powers and charging request energy threshold percentages.

As shown in Fig. 11, under the same 𝑣𝑐 , increasing 𝐸𝑚 can prolong
the charging cycle but decrease the network QSC. Due to the limitation
of MC charging capability, the nodes that have been charged will
have insufficient energy again in the extended charging cycle, which
increases NONs and reduces SCR. Therefore, we can conclude that if
𝑣𝑐 is limited and cannot meet the whole network consumption rate, it
is wise to appropriately reduce 𝐸𝑚 to charge WRSN in multiple short
charging cycles.

As shown in Fig. 12, under the same 𝐸𝑚, the network QSC increases
as 𝑟𝑝 increases until it reaches the optimum. The increase in 𝑟𝑝 means
that when MC performs the charging task, 𝐸𝑖𝑛 is relatively high, and
𝑡𝑐 can be effectively shortened. Because of 𝑡𝑐 ≫ 𝑡𝑙, when the MC
charging capacity is limited, nodes may stop working in 𝑡𝑐 with a
higher probability, so NONs is reduced. When 𝐸𝑚 = 14400 and 𝑟𝑝 =
0.1, the network QSC reaches the minimum of 0.78. Because 𝐸 of
9

𝑖𝑛
Fig. 12. Comparison of five algorithms in terms of network QSC by deploying different
MC carrying capacities and charging request energy threshold percentages.

Fig. 13. Comparison of five algorithms in terms of network QSC by deploying different
node battery capacities and charging request energy threshold percentages.

nodes are low, in the initial stage of MC performing the charging task,
many nodes will stop working simultaneously. Therefore, in practical
applications, we should set a larger 𝑟𝑝 as much as possible to increase
𝐸𝑖𝑛 to maximize the network QSC.

5.5. Comparison against different node battery capacities

The node battery capacity 𝑒𝑚 will have a double-sided impact on
the network sensing coverage performance because it affects both the
working time of nodes and 𝑡𝑐 . In this part, we analyze the changes in
network QSC of four algorithms for different node battery capacities,
different MC charging powers and charging request energy threshold
percentages.

In Fig. 13, with the increase of 𝑒𝑚 under the same 𝑟𝑝, the overall
network QSC shows a fluctuating trend. The extended working time of
nodes and 𝑡𝑐 does not mean that the network QSC can be improved.
When MC charging capability is limited, increasing 𝑒𝑚 is equivalent to
the reduction of 𝑣𝑐 , indicating that the time needed for MC to charge
the node increases, fewer nodes may not be charged in time, negatively
impacting network QSC in the charging cycle. Therefore, in practical
applications, we need to set the battery capacity of the node according
to the actual MC charging capability and charging demands of WRSN.

As shown in Fig. 14, with the increase of 𝑣𝑐 , the network QSC under
different 𝑒𝑚 all increase significantly. Four algorithms can achieve
optimal network sensing coverage when 𝑣 = 80. However, it fluctuates
𝑐
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Fig. 14. Comparison of five algorithms in terms of network QSC by deploying different
node battery capacities and charging powers.

Fig. 15. Network SCR and NONs in the charging cycle of four algorithms.

wildly when the network QSC is between 𝑣𝑐 = 20 and 𝑣𝑐 = 40. Most
nodes have no time to be charged during this period, and the network
QSC is only about 0.55. However, there are 50 nodes in this experimen-
tal environment, and the average energy consumption of each node is
1 J∕s. Therefore, 𝑣𝑐 = 40 is close to the overall energy consumption of
the network. Under a reasonable mobile charging scheduling strategy,
the network QSC can reach a higher level.

5.6. Discussion the advantage of MEDQN

The comparison simulations performed in this study have essen-
tial scientific and practical significance, which can help us evaluate
the effectiveness and applicability of the proposed MEDQN algorithm
under different conditions. Finally, we analyze the reasons for the
performance advantages of MEDQN.

Fig. 15 is the overall change of SCR and NONs in one charging cycle
for the four algorithms. The comparison shows that before the 26th
charging action, TSCA can guarantee the average network SCR to be
1. The reason is that TSCA always insists on charging nodes with lower
𝑒𝑟 to reduce non before no nodes stop working. However, starting from
the 27th charging action, the average sensing coverage of the network
10
decreases almost linearly. Because MC charging capability is limited,
MC is too late for all nodes whose remaining energy is about to be
exhausted, and many nodes stop working simultaneously.

In contrast, MEDQN and MSCG consider the sensing coverage con-
tribution of each node. Different from MSCG, which always charges the
node with the most significant sensing coverage contribution, MEDQN
can consider short-term and long-term benefits to optimize the network
QSC in the charging cycle. MEDQN may not charge the node with the
lowest 𝑒𝑟 or one that has stopped, and it can choose the node with the
lower 𝑒𝑟 that has a more significant sensing coverage contribution to
other nodes to ensure the overall network QSC in the charging cycle.

6. Conclusion

Considering the constraints of MC charging capability on the net-
work QCS in dynamic WRSNs, this paper proposes a novel model-free
MEDQN algorithm for OMCS-QSC to maximize the network QSC by
finding the optimal charging strategy according to the real-time net-
work state. To evaluate the MC real-time charging action, we design a
novel reward function based on the real-time node’s sensing coverage
contribution. Extensive experiments are conducted to evaluate the per-
formance of MEDQN for OMCS-QSC under different settings, including
different network scales, MC charging powers, MC battery capacities,
nodes’ battery capacities, and the charging request energy threshold
percentages. Experimental results show that MEDQN is superior to
other online algorithms in maximizing network QSC, especially in
large-scale WRSNs.

As the future work, based on the online approach proposed in
this paper, designing an online algorithm for joint mobile charging
scheduling and MC charging time control for the optimal network QSC
in dynamic WRSNs should be considered.
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