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By trial and error, the optimum diameter D* is found and the corresponding
values of I*¥ and t* are obtained by substitution. Thus

D¥ = "Cl2F 7 m
I* = 10.860 m
t* =12 77:mm
T* = 40 mm.

The total cost for the optimal design is made up as follows:

Cost of steel (cylinder) $16 691.56
Cost of steel (hemisphere)  $3925.31

Cost of welding $1321.88
Cost of insulation $4284.97
Discounted losses $3225.56
Total $29 449.28.

This design is not practically feasible, since steel plate is available only in
discrete thicknesses. If the value of plate thickness ¢ is rounded up to 13 mm, some
advantage may be taken of the increased hoop tension strength to increase the
diameter and thus reduce the surface area of the vessel.

From (12.13), if ¢t = 13 mm, the maximum diameter is 1.3 m. Then by the
volume constraint of (12.15), the length L is 10.434 m. The modified design is then

D =13m

L =10434m
t=13mm

T = 40 mm

and the total cost is increased to $29 454.11. This last calculation suggests an
alternative approach to the problem. Since T is obtained by sub-optimization
and the two equality constraints are relatively simple, it would be possible to
develop an algorithm in which the plate thickness ¢ (mm) is the only independent
variable. From ¢, the value of D is found by (12.13) and, hence, L from (12.15). All
quantities and costs are then calculable.

125 A NEW WATER SUPPLY
12.5.1 Background

The problem described in this section is somewhat similar to the Thirstville ‘case-
study" of Section 1.4. The supply is assumed to be by gravity main, but the
problem is complicated by the irregular demand pattern and a more detailed
design of the balancing tank. The scene is set by the following memorandum,
together with the typical cross-section of Figure 12,10
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To:  Dr S. T. Mater, Civil Engineering New Works.
From: Ms Chris Talgazing, Planning Department.
Re: New Water Supply.

I have now received from the Process Planning Section an estimate of
the water supply which will be required by the new plant. The demand,
averaged over four-hour intervals, is given for a one-week cycle in the
attached table, from which you will note that considerable fluctuation
in demand is to be expected.

The local authority has assured me that the town supply main can
provide in excess of 0.1 m3/s and I understand that the main passes
within 3.2 kilometres of the demand point. The pressure elevation at the
take-off point on the town main should be about 30 m above ground
elevation at the plant.

I should like you to examine the costs of providing a water supply,
including, if necessary, a reinforced concrete balancing tank. A typical
cross-section of a similar reservoir is shown in the accompanying
sketch; the same criteria for earth cover, ground slope, freeboard, etc.,
should be used in your estimate. I should point out, however, that the
only ground available for such a tank is a long, level strip only
25 m wide.

I realize that there may be further information necessary before your
study can be completed, and that estimates of construction costs are
approximate. However, I hope your report will help to identify and
define the main factors to be considered and show whether or not a
balancing tank is justified.

Expected Water Demand
(flows in cubic metres per second, averaged over four-hour periods)

Time 124 4-8 8-12 124 4-8 8-12
am. am. noon p-m. p.m. midnight
Sun. 0.012 0.020 0.037 0.031 0.020 0.017
Mon. 0.012 0.034 0.083 0.068 0.057 0.034
Tues. 0.023 0.040 0.068 0.062 0.045 0.028
Wed. 0.021 0.045 0.051 0.034 0.034 0.016
Thurs. 0.023 0.014 0.034 0.048 0.054 0.040
Fri. 0.021 0.014 0.034 0.048 0.054 0.040
Sat. 0.018 0.026 0.040 0.060 0.045 0.026

12.5.2 Problem formulation

The first step is to prepare a sketch of the system showing the relevant
components, system parameters, and design variables. Figure 12.11 shows such a
diagram, and the following system parameters and design variables are identified:
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0.6m earth cover
Slab thickness 0.3m
0.3m freeboard

Average base thickness 0.23m
Figure 12.10 Typical section of in-ground tank

Y Oo.:
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Figure 12.11 Diagrammatic sketch of the system (New Water Supply Problem
Section 12.5)

System parameters:

Pipeline length L (m) 3200 m
Available pressure head h¢ (m) 30m
Available ground width W (m) 25m
Outflow (demand) 05 (m>/fs), - (see table)
Embankment slope RS 2:1

Reinforced concrete bending modulus

Design variables:

W (N/mm)? 0.4 N/mm?

Inflow (supply) Qin (m3/s)
Pipe diameter D (m)
Inside tank breadth B (m)
Inside tank length XL (m)
Water depth H (m)
Depth in ground G (m)
Concrete wall thickness d (m)
Tank volume V(m3)

The objective function which is to be minimized comprises only capital
expenditures. No continuing costs are included.

Objective function z = C1 (Excavation) (12.18)
+ C2 (Embankment)
+C3  (Import fill/export surplus)
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+C4 (Reinforced concrete)
+C5 (Formwork — outside, inside, and roof slab)
+C6 (Pipeline).

The following costs are assumed for the purpose of the analysis. -

Excavation $5.00/m3 (12.19)
Form embankment $2.00/m3 :
Import fill or dispose of surplus $2.50/m3

Outside formwork $12.00/m?

Inside vertical formwork $18.00/m?
Suspended slab formwork $25.00/m?
Reinforced concrete $100.00/m?

Pipeline C6 = LD(390 — 11.5,/D).

12.5.3 Identifying constraints

The eight design variables defined in Section 12.5.2 are not independent and the
next step is to determine the interactions which exist between these variables and
to define the relevant constraints.

Pipeline capacity

The inflow Q;, and pipe diameter D must be related to the available piezometric
gradient, which in turn is defined by the pressure head h; and the length L. A
decision is needed as to the flow resistance law and the relevant friction loss
parameters. The Strickler equation will be used here with an equivalent
roughness height of k = 0.3 mm. (This is another system parameter, omitted from
the list of Section 12.5.2.) Thus,

841 /gn . (D\*3(h\'?
m;u|»:ﬂimc~ = ) - (12.20)

Balancing tank volume

Within certain limits, the required storage volume V¥ will be dependent on the
value of the inflow Q;, and the specified demand pattern Q. (Figure 12.12).

V(m?)

Vmax 4—-—— =

|

@ Q;, (m?/s)

0038 0.083

Figure 12.12  Storage volume as a function of inflow
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Inspection of the table of Q,,, values shows that if Q;, > 0.083 m?/s, there will be
no need for a balancing tank. This, however, might require a large and expensive
pipeline. At the other extreme, the value of Q,, must not be less than the average
demand. This is given by

HAN

Amoﬁvmé = A.[N .HM~ Amoc.vm = 0.038 Ew\m.

When Q;, = 0.038 m?/s, the balancing storage required will be a maximum. For

intermediate values of @, (i.e. 0.038 < Qi, < 0.083), some form of calculation or
interpolation will be required.

Tank dimensions

The design variables include all three internal dimensions for the storage tank, as
well as the required volume. Obviously, there is a simple relation between these
quantities, i.e.

B XEx H=T7 (12.21)

Wall thickness

For this example, it will be assumed that the reinforced concrete wall of the tank
will experience the greatest bending moment when the tank is hydraulically
tested before backfilling on the outside and before completion of the roof slab.
Figure 12.13 shows this condition. The thickness of the wall will be based on the

ouxx_

Figure 12.13 Hydrostatic loading of an unpropped cantilever

value of the bending moment on a simple, unsupported cantilever subject to
hydrostatic loading. The analysis is more complex than this, but the assumption
is probably adequate for the purpose of proportioning the tank.
For a fluid specific weight of y = 9810 N/m? and depth H, the pressure at the
base is p = yH. The total force is given by
P = Hp/2 = yH?*/2 (12.22)
Thus,
BM = PH/3 = yH*/6, (12.23)
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The wall thickness can now be determined by the relation
BM = RM = Kbd?> (12.24)

in which the flexural strength factor K is given a low value of 0.4 N/mm? in order
to reduce the risk of the concrete cracking on the wet, tension side. The quantity b
in (12.24) represents the breadth of the reinforced concrete section, but in this case
the wall may be designed for a unit width of 1 m so that b = 1.

-Width constraint

If a balancing tank is to be constructed, the total width between the toes of the
embankment on each side must be less than 25 m. Clearly, this distance will
depend on the tank dimensions H and B, the wall thickness d, and the depth G to
which the tank is sunk in the ground. Figure 12.14 shows the geometry of the
cross-section.
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Figure 12.14 Relation between total width W and other variables

The embankment height is given by
X=H+143-G (12:5)

in which the number 1.43 is the sum of the fixed quantities shown in Figure 12.10.
The total width Wis then found as

W= B+ 2d + 2mX (12.26)
and the necessary constraint takes the form
W—25.0<0.0. (12.27)

12.5.4 Solving the mathematical model

From the preceding sections, the mathematical model may be set up.

Minimizez =C14+C2+...+C6 (refer 12.18)
©Q*.D*, B* XL* H*,G* d*,V*
subject to

41(Qn, D) = 0 (refer 12.20)
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95(B, XL, H, V) =0 (refer 12.21)
9.d, H) =0 (refer 12.22-24)
(W-25)<0. (refer 12.25-27)

This is a non-linear problem involving eight design variables, four equality
constraints, and one inequality constraint. The problem can be greatly simplified
if a sub-set of the design variables is chosen so as to allow the equality constraints
to be substituted in the objective function, thus reducing the complexity of the
model.

If the selected independent design variables are diameter D, tank breadth B,
depth H, and in-ground depth G, the equality Constraints can all be incorporated
into the objective function as follows:

1. Calculate Q,, = ¢(D) by (12.20).

2. Find required storage volume V= HNOin).

3. Obtain inside tank length XL = #(V, B, H) (12.21).
4. Calculate wall thickness d = ¢(H) (12.22-24).

The reduced model now takes the following. form:

Minimize z = (C1 + C2 +. .. +C6) (12.28)
D*,B* H* G*
subject to

W—250<0.

This model can be further reduced to an unconstrained model by
incorporating a penalty term to ensure that the inequality constraint is satisfied,
lie,

Minimize z' = (C1 + C2 +...+ C6) + FAC(W — 25)6 (12.29)

where 6 = 1 if W—25>0and 6 =0 if W— 25 < 0.

The multiplier FAC in (12.29) should be large enough to ensure that the penalty
term is significant in comparison with the real objective function z. Equation
(12.29) may now be optimized by a non-linear algorithm such as the Hooke and
Jeeves pattern search (i.e. subroutine HJ MIN).

1255 Calculating balancing storage

As discussed in Section 12.5.3, a method is required to compute the necessary
balancing storage as a function of the inflow Qin. A suitable subroutine BALNCE
is illustrated in Figure 12.15 which should be self-explanatory.

It would be possible to include a call of this routine within the cost routine used
by HIMIN, but this would be rather inefficient. A better arrangement would be to
include in the driving program a series of calculations which would determine
corresponding values of inflow Q,, and storage volume V, which could then be
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SUBROUTINE BALNCE (QOUT, NQOUT, QIN, VOLUME)
R b L T T T T T LT T Tpupuppnpnpoanp
C THE ROUTINE OPERATES ON AN ARRAY OF REQUIRED OUTFLOWS

C TO DETERMINE THE NECESSARY BALANCING STORAGE VOLUME WHICH

C IS REQUIRED IF THE SPECIFIED INFLOW VOLUME IS SUPPLIED,

C IF THE INFLOW IS LESS THAN THE AVERAGE DEMAND A VERY

C LARGE VOLUME (E.G. 10.0E20) IS RETURNED.

C QOuT ARRAY OF SIZE (NQOUT) CONTAINING THE REQUIRED

C TIME SERIES OF OUTFLOWS.
c
C
(o}
c
c
C
c

NQOUT NO. OF OUTFLOWS.

QIN SPECIFIED AVAILABLE INFLOW.

VOLUME = COMPUTED BALANCING STORAGE VOLUME REQUIRED.
THE UNITS USED MUST BE CONSISTENT THROUGHOUT. THUS
THE VOLUME IS DEFINED IN TERMS OF THE TIME INCREMENT
USED TO DEFINE THE OUTFLOW TIME SERIES.

b T T L Ll T T T T T T
DIMENSION QOUT(NQOUT)
SUMQ=0.0
VOL=0.0
VMIN=0.0
DO 10 I=1,NQOUT
DV =QIN-QOUT (I)
SUMQ=SUMQ + QOUT(I)

TEST IF TANK IS FULL AND OUTFLOW .LE. INFLOW
IF(DV.GE.0.0.AND.VOL.GE.0.0) GOTO 10
VOL=VOL + DV
IF(VOL.GT.0.0) VOL=0.0
IF(VOL.LT.WIN) VMIN=VOL

10 CONTINUE
VOLUME=-VM IN
C CHECK THAT AVERAGE DEMAND IS AVAILABLE AT LEAST.
QAVE =SUMQ/FLOAT (NQOUT)
IF(QIN.LT.QAVE) VOLUME=10,0E20
RETURN
END

Figure 12.15 FORTRAN subroutine BALNCE

()

transferred to the cost routine for interpolation in much the same fashion as
illustrated in Figure 12.12. Two points are worth noting:

(1) If the inflow Q,, is less than the average demand, the routine BALNCE
automatically sets the required volume to an arbitrarily high value. This is
equivalent to adding a penalty term if the constraint Oi, = 0.038 is violated.

(2) In calculating the cost of the balancing tank, a check should be made that the
required volume is finite. If Q, > 0.083 m?/s, then V= 0.0 and all the
calculations associated with the tank can be skipped.

12.5.6 Typical solution

A typical solution using routine HIMIN is presented in this section. As described
in Section 5.7.1, the method requires a main driving program and an objective
function subroutine and must be executed in conjunction with the routine
HIMIN as listed in Appendix A. The two subprograms will be discussed
separately
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The dimension statements define the various arrays required. Two of these
hold the values of the design variables and the corresponding incremental values
to be used in the local search procedure of HIMIN. These appear in the calling
statement. The other arrays are needed to store the outflow time history and the
computed values of Q;, and V used to define the curve of Figure 12.12. Other
design variables, system parameters, design quantities, and rates are transferred
between the main program and the cost subroutine by means of labelled
COMMON blocks. Those variables which constitute input to the routine COST
are initialized either by a DATA statement, by simple assignments, by input from
the keyboard, or by calculation. The inflow—storage function is defined by a set of
11 coordinate pairs which are evaluated in a DO-loop. Note that the minimum
inflow is set slightly below the average demand to ensure that an arbitrarily high
storage quantity is assigned, thus serving as a penalty term.

After the call of HIMIN, the optimal values of the design variables, together
with other relevant information, are output. Some of the output is conditional on
the balancing tank being of finite size. It is convenient to introduce a loop in the
main program to allow alternative starting values to be defined. This helps to
confirm the existence of a global minimum.

The objective function subroutine COST contains identical COMMON
blocks and relevant dimension statements, as in the main program. It is
convenient (and marginally more efficient), to re-assign the design variables as
simple variables, rather than elements of an array. The first step is to calculate the
pipeline cost and calculate by interpolation the storage volume required for the
pipeline capacity. If no storage is required, the objective function calculation ends
here. However, for finite storage volumes, the design of the tank makes up the
bulk of the coding. The details of the design and the calculation of quantities
should be fairly obvious from the coding and comment statements.

When the total real cost is calculated, penalty terms are added which
correspond to the remaining constraints on the solution. The principal one is the
available width of ground, but other (perhaps superfluous) non-negativity
constraints have been added to keep the tank dimensions positive. It is easy to
overlook the fact that the extrapolation step of the algorithm might produce a
negative value of a variable which in turn generates a ‘negative cost’.

The solution given by the program of Figure 12.16 is summarized in the output
shown in Figure 12.17.

12.5.7 Allowance for discrete variables

The solution developed in the previous section. may be impractical since the pipe
diameter is assumed to be a continuous variable. A more realistic solution would
be to remove the diameter from the array of design variables and introduce a loop
in the main program to allow a series of discrete, commercially available pipe
sizes to be defined. For this diameter, the inflow capacity and thus the storage
volume would be fixed and transferred through COMMON block to the
subroutine. The program of Figure 12.16 could be forced to operate in this way by

(@]
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PROGRAM TANKEX
DIMENSION VAR(4),DVAR(4)
SEE ROUTINE COST FOR DEFINITION OF DESIGN VARIABLES
DIMENSION QOUT (42),QAR(11),VOLAR(11)
THESE ARRAYS USED TO DEFINE DEMAND AND INFLOW/STORAGE
RELATIONSHIP
COMMON \UHMHQZ\O.»W.<Or>m._...E...N.Z.xr.<o_x.£._u.HZwI.H.
+ QIN
COMMON /RATES/CEXC,CEMB, CDIF,CCONC ,CFORMO,CFORMI, CFORMS
REAL K,L,M
EXTERNAL COST
DEF INE DEMAND TIME HISTORY
DATA QOUT/0.012,0.020,0.037,0.031,0.020,0,017,
0.012,0.034,0.083,0.068,0.057,0.034,
o.omw.0.0:0.0.omm.0.0@N.0.0:m.o.omm.
0.021,000U45505051,0.,034,0.031,0.016,
O.omw.o.ozo.o.omm.o.o.j.o.om._.o.ow:.
0.021,0.014,0,.034,0.048,0.054,0.040,
+ 0.018,0.026,0.040,0.060,0.045,0.026/
RESTART WITH NEW INITIAL VALUES
1 CONTINUE
DEFINE INITIAL VALUES FOR DESIGN VARIABLES AND INCREMENTS
DISPLAY "SUPPLY INITIAL VALUES FOR B, H, G, DIA"
ACCEPT VAR(1),VAR(2),VAR(3),VAR(Y4)
IF(VAR(1).LE.0.0) STOP
DO 5 J=1,4
5 DVAR(J)=VAR(J)/25.0
DEF INE SYSTEM PARAMETERS
L=3200.0
HF=30.0
K=0.0003
M=2.10
DEFINE COST RATES
CEXC=5.00
CEMB=2. 00
CDIF=2.50
CCONC=100.0
CFORMO=12.00
CFORMI=18.00
CFORMS=25.00
GET AVERAGE AND MAXIMUM DEMAND FLOWS.
QAVE=0.0
QMAX=0.0
DO 10 J=1,42
QAVE=QAVE + QOUT(J)
IF (QOUT (J).GT.QMAX) QMAX=QOUT(J)
10 CONTINUE
QAVE=QAVE/42.0
COMPUTE POINTS ON INFLOW/STORAGE CURVE
SET MIN. FLOW JUST BELOW QAVE TO ENSURE PENALTY
QMIN=QAVE-0. 001
DO 20 J=1,11
QIN=QMIN + (QMAX-QMIN)¥*FLOAT(J-1)/10.0
CALL BALNCE (QOUT, 42,QIN,VOL)
QAR (J)=QIN
VOLAR (J )=VOL®*4,0%*3600.0
20 CONTINUE

+ 4+ 4+

Figure 1216 (a) Maimn FORTRAN program for problem of New Water Supply
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c umezm PARAMETERS FOR ROUTINE HJMIN
DATA RHO,EPS,NW/0.5,0.01,0/
NMAX=1000

CALL HJMIN(VAR,DVAR,4,ANS,RHO,EPS,COST, NW,NMAX)

C NOW OUTPUT RESULTS
WRITE (6, 100 )NMAX
WRITE (6, 101)ANS
WRITE (6, 102)VAR (4)
WRITE (6, 110)QIN
100 FORMAT (18H SOLUTION FOUND IN,I5,11H ITERATIONS)
101 FORMAT (15H MINIMUM COST=$,10X,F10.2)
102 FORMAT(18H PIPE DIAMETER(M)=,7X,F10.3)
110 FORMAT(16H AVERAGE INFLOW=,9X,F10.3)
C SKIP REMAINING OUTPUT IF NO TANK REQUIRED.
IF(VOL.GT.0.0) GOTO 30
WRITE(6,103)
103 FORMAT(25H NO STORAGE TANK REQUIRED)
GOTO 1
30 CONTINUE
WRITE(6, 104)VAR(1),XL,VAR(2)
WRITE (6,105 )VOL
WRITE (6, 106 )VAR(3)
WRITE(6,107)D
WRITE (6, 108)W
WRITE (6,109 )EMBHT
104 FORMAT(19H TANK DIMENSIONS(M),6X,3F10.3)
105 FORMAT(19H TANK VOLUME(CUB.M),6X,F10.3)
106 FORMAT(21H TANK DEPTH IN GROUND,4X,F10.3)
107 FORMAT (19H TANK WALL THKSS(M),6X,F10.3)
108 FORMAT(15H WIDTH USED (M), 10X,F10.3)
109 FORMAT (18H EMBANKMENT HT.(M),7X,F10.3)
GOTO 1
END

Figure 12.16 (a) — continued

SUBROUTINE COST(X,CST)

CHMMII NN RN RN NN RN RN NN NRR RN AR RN
THIS ROUTINE DETERMINES AN ARTIFICIAL OBJ. FUN.
FOR THE TANK + PIPELINE WITH A PENALTY TERM FOR
THE AVAILABLE WIDTH CONSTRAINT.

X(1) = INSIDE TANK BREADTH (B)

= INSIDE DEPTH OF WATER (H)
X(3) = DEPTH OF TANK IN GROUND (G)
X(4) = PIPE DIAMETER. (DIA)

USES COMMON BLOCKS /DESIGN/ AND /RATES/
B0 0000000000000 00 06 06 06 06 36 00 300000000 06 96 06 96 06 36 06 06 06 30 06 36 06 36 96 36 06 06 36 06 36
DIMENSION X(4)
DIMENSION QAR(11),VOLAR(11)
COMMON /DESIGN/QAR,VOLAR,L,HF,K,M, XL, VOL,W,D, EMBHT,
+ QIN
COMMON /RATES/CEXC,CEMB, CDIF,CCONC,CFORMO,CFORMI, CFORMS
REAL K,L,M
C  REDEFINE DESIGN VARIABLES FOR CONVENIENCE
B=X(1)
H=X(2)
G=X(3)
DIA=X(4)

Figure 12,16 (b) Objective

c
c
C
c
C X(2)
c
c
(¢
(¥

100 subroutin

a

CHECK D>0 AND GET PIPE COST
IF(DIA.LT.0.0) DIA=0.0
CPIPE=L*DIA%(390.0 - 11.5%SQRT(DIA))
CST=CPIPE
CALC QIN BY STRICKLER EQN.
CONST=8.41%SQRT (9.81)/(K**0, 1667)
QIN=CONST*0.785*DIA*DIA*(DIA/4.0)**0 667 *SQRT (HF/L)
FIND HOW MUCH BALANCING STORAGE NEEDED WITH THIS FLOW.
CALL INTER1(VOLAR,QAR,11,QIN,VOL)
IF ZERO VOLUME IGNORE TANK CALCS
IF(VOL.LE.0.0) RETURN
GET TANK LENGTH AND DESIGN WALL THICKNESS
XL=VOL/(B*H)
BM=9810.0*H*H *H/6.0
D=SQRT (BM/400000.0)
GET OVERALL TANK DIMENSIONS
HOA=H + 0.83
BOA=B + 2.0%D
XLOA=XL + 2.0%D
GET QUANTITIES OF EXCAVATION AND EMBANKMENT
VOLEXC =BOA #XLOA*G
EMBHT =HOA+0. 6-G
IF (EMBHT.LT.0.0) EMBHT=0.0
A1=BOA®*XLOA
A2=(BOA+M*EMBHT ) # (XLOA+M*EMBHT )
A3=(BOA+2. 0*M*EMBHT ) * (XLOA+2, O*M*EMBHT )
VOLEMB= (EMBHT/6.0)¥(A1 + 4,0%A2 + A3)
HAG=HOA - G
IF(HAG.LT.0.0) HAG=0.0
VOLEMB=VOLEMB - HAG¥BOA¥*XLOA
FIND DIFFERENCE BETWEEN EXC AND EMB VOLUME.
IGNORE BULKING
VOLDIF =ABS (VOLE XC-VOLEMB)
GET CONCRETE VOLUME
CONC=2, 0% (BOA+XL )*HOA*D + 0.53*BOA*XLOA
NOW GET OUTSIDE, INSIDE AND SLAB FORMWORK
FORMO=2, 0% (BOA+XLOA ) *HOA
FORMI=2.0%(B + XL)*(H + 0.3)
FORMS =B#*XL
NOW CALCULATE COSTS FOR TANK CONSTRUCTION
C1=VOLEXC*CEXC
C2=VOLEMB¥*CEMB
C3=CONC*CCONC
C4=FORMO*CFORMO + FORMI*CFORMI + FORMS*CFORMS
C5=VOLDIF*CDIF
CST=CPIPE+C 14C2+4C 3+CU+C5
CHECK WIDTH OF GROUND USED AND ADD PENALTY TERM
W=BOA + 2.0%M*EMBHT
PENW=1,0EQ7 #(W-25.0)
IF(PENW.LT.0.0) PENW=0.0
ADD PENALTY TERMS FOR NON-NEGATIVE VARIABLES
PENG=1.0E6*(-G)
PENH=1.0E6%(-H)
PENB=1.0E6%*(-B)
IF (PENG.LT.0.0) PENG=0.0
3 T.0.0) PENH=0,0
.0.0) PENB=0.0
+ PENW + PENG «

| igure 1216 (b)
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SUPPLY INITIAL VALUES FOR B, H, G, DIA .2 15.0, 2.5, 2.5, 0.2
SOLUTION FOUND IN 381 ITERATIONS

MINIMUM COST=$% 305617.00
PIPE DIAMETER(M)= .207
AVERAGE INFLOW= .0u6
TANK DIMENSION(M) 15.010 23.218 2.860
TANK VOLUME(CUB.M) 999.126
TANK DEPTH IN GROUND 1.947
TANK WALL THKSS(M) «309
WIDTH USED (M) 24..999
EMBANKMENT HT.(M) 2.343

Figure 12.17 Results from program of Figure 12.16

setting O.<>E£Ho.o after the four quantities are initialized. Although
computationally inefficient, this small change would cause the diameter to

remain constant at the value input by the user. Typical results are shown in
Figure 12.18.

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.2
SOLUTION FOUND IN 251 ITERATIONS

MINIMUM COST=$ 31596319
PIPE DIAMETER(M)= .200
AVERAGE INFLOW= .ou2
TANK DIMENSIONS (M) 13.650 3.784 3.406
TANK VOLUME(CUB.M) 1477 .795
TANK DEPTH IN GROUND 2,200
TANK WALL THKSS(M) . 402
WIDTH USED (M) 24.999
EMBANKMENT HT. (M) 2.636

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.21
SOLUTION FOUND IN 207 ITERATIONS

MINIMUM COST=$ 305653.56
PIPE DIAMETER(M)= .210
AVERAGE INFLOW= .0u8
TANK DIMENSIONS(M) 14,555 20.091 3.179
TANK VOLUME(CUB.M) 929.732
TANK DEPTH IN GROUND 2.180
TANK WALL THKSS(M) «362
WIDTH USED (M) 24,997
EMBANKMENT HT. (M) 2.429

SUPPLY INITIAL VALUES FOR B, H, G, DIA ?15.0, 2.0, 2.0, 0.22
SOLUTION FOUND IN 203 ITERATIONS

MINIMUM COST=$ 306607.25
PIPE DIAMETER(M)= vaey)
AVERAGE INFLOW= .054
TANK DIMENSIONS (M) 14,775 14,774 3.009
TANK VOLUME(CUB.M) 656.897
TANK DEPTH IN GROUND 2.180
TANK WALL THKSS(M) .334
WIDTH USED (M) 24,480
EMBANKMENT HT.(M) 2258

Figure 12,18 Results from program of Figure 1216 modihied for constant diameter
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126 MINIMUM WEIGHT OF A PORTAL FRAME
12.6.1 Introduction

In Chapter 3 the minimum weight design of a rectangular portal frame was
considered. In this section the problem is re-examined in a more general way with
particular attention given to the following aspects of the problem:

(i) The dimensions of the frame should be variable and the type and intensity of
the loading should be generalized.

(i) The significance of the assumed linear relationship between the weight per
unit length and fully developed plastic moment should be examined.

(iii) The effect on the optimal design of only discrete members being available
should be studied.

The following memorandum provides background to the project:

Memorandum

To:  Ben Tover, Drawing Office.
From: Willi Bendit, Fabricating Shop.
Re:  Minimum Weight Frames.

We are anticipating enquiries regarding the supply of a number of
rectangular portal frames. At the moment it is not clear what the
dimensions will be, nor do we know the exact nature and intensity of the
loading to be carried.

We have in stock a good selection of beam and column sectionstand
I should like to be in a position to respond quickly to any requests
received.

I recall that on a previous occasion you developed a minimum weight
design for a specific job subject only to concentrated loads, although I
seem to remember that it was based on an assumption of linear
relationship between section weight and plastic moment about which I
had some doubts. Would you look into the possibility of preparing a
computer program which would enable us to develop similar minimum
weight designs for a variety of conditions?

12.6.2 Re-statement of the problem

For convenience the problem is re-stated as developed previously in Section 3.14.
With reference to the frame of Figure 12.20(c) the printed problem may be written
as follows for columns and beams of weight per unit length W, and W,
respectively.

Minimize z = 2L .W. + LyW, (12.30)

ywi the properties (mass per metre and plastic modulus) for the beam and column




