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Abstract

Automated examination of biomedical signals plays a vital role to diagnose diseases

and offers useful data to several applications in the areas of physiology, sports medi-

cine, and human–computer interface. The latest advancements in Artificial Intelli-

gence (AI) have the ability to manage and analyse enormous biomedical datasets

resulting in clinical decision making and real time applications. At the same time,

Colorectal cancer (CRC) is the third most deadly disease affecting people over the

globe. The utilization of AI techniques for the earlier identification of CRC has gained

significant interest among the research communities. Therefore, this paper presents a

novel AI based fusion model for CRC disease diagnosis and classification, named

AIFM-CRC. The presented AIFM-CRC model primarily undergoes Gaussian filtering

based noise removal and contrast enhancement as a preprocessing stage. In addition,

a fusion based feature extraction process takes place where the SIFT based hand-

crafted features and Inception v4 based deep features are fused together. Besides,

whale optimization algorithm tuned deep support vector machine model is employed

as a classification technique to determine the existence of CRC. In order to highlight

the proficient results analysis of the AIFM-CRC model, a comprehensive simulation

analysis takes place. The resultant experimental values pointed out the betterment of

the AIFM-CRC model by accomplishing a maximum accuracy of 96.18%.
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1 | INTRODUCTION

Colorectal cancer (CRC) has become the deadliest disease which affects both genders globally and it remains a second major reason for cancer

related mortality (Colorectal Cancer Statistics, 2019). In fortunate, the occurrence and death rate of CRC gets gradually reduced in the last

30 years in the United States due to the efficient diagnosis method. In 1993, landmark National Polyp research illustrated that the occurrence of

this tumour can be decreased with polypectomy and colonoscopy of adenomatous polyps (Winawer, 1993), that is approved in several investiga-

tions. Therefore, several main social rules have suggested colonoscopy as preferable colon cancer (CC) diagnosis approach. Adenoma detection

rate (ADR) refers the ratio of diagnosis colonoscopy having minimum of one adenoma—has been a main quality measure in the US for estimating

an endoscopists capability to detect adenomas. Advanced ADRs are related to low post colonoscopy CC and deaths (Burt et al., 2013; Corley

et al., 2014). Numerous additional methods and gadgets have been investigated for enhancing an endoscopists capability to find adenomas. To

raise the effectiveness and reduce entire health care cost, several techniques are needed to design to precisely screening and neglect tiny non-
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neoplastic polyps and extract precancerous polyps. This technique obtains important function is computer aided diagnoses (CAD), that is com-

puter enabled image investigation which includes both increasing polyp detection and histopathologic variations with no changes to the colono-

scope or original process. Moreover, in contrast to alternative methods (like virtual chromoendoscopy and narrow band imaging), CAD is mostly

operator-independent (Chao et al., 2019).

Recently, artificial intelligence (AI) has resulted in the design of deep neural network (DNN) and machine learning (ML) techniques, particularly in the

field of computer vision (LeCun et al., 2015). A convolutional neural network (CNN) is the type of DNN which is extremely efficient in carrying out an

image and video analysis. A CNN based CAD method for colonoscopy can support endoscopists in the identification polyps and carry out visual diagno-

ses (Alagappan et al., 2018). These AI based methods have high significance to increase the ADR and decrease the cost of polypectomy for hyperplastic

polyps (Mori et al., 2017). For obtaining maximum efficiency, the polyp detection method must contain higher sensitivity for the identification of polyps

with false positive rate, whereas it maintains faster computation and finds appropriate for real-world colonoscopy. By the utilization of AI for colonos-

copy, automated identification and classification of colorectal polyps have gained more interest over the variation of polyps in either hyperplastic or ade-

nomatous. The previous goal is to identify polyps, regardless of the pathology (either neoplastic nor hyperplastic polyps). Subsequently, it assists visibly

to categorize the polyp's detection into pathological classes. In the earlier studies, polyp identification is more investigated by white light imaging,

whereas polyp classifier needs recent imaging techniques like magnifying narrow band imaging (Kudo et al., 2019).

1.1 | Conventional and AI based histologic analysis

The large slice of all tumours is chosen to estimate the succeeding histologic features such as ineffectively distinguished clusters, lymphatic inva-

sions, venous invasions, cancer depths, and budding. Venous invasion is ensured via H&E by Victoria blue staining highlighting the elastic fibre

(Takamatsu et al., 2019). The deepness of submucosal invasion is determined based on the Japanese Society of the Colon and Rectum criteria.

The badly distinguished clustering is determined as tumour cluster consisting of more than five cells and insufficient to glandular structure and

considered as positive when the size is approximately 0.24 mm2 by 40� objective lens. Cancer budding is estimated at H&E slide and determined

based on past researches as a tumour cell or clustering consist of 1–4 cells in the invasive frontal region. The AI assisted histologic estimation of

the colorectal region is growing at a faster rate. The AI has started to utilize for predicting the prognoses of T1 CRC persons by traditional histo-

logic estimation information and further medical data. The classical histologic estimation is yet needed, but, and the issue of interobserver argu-

ment still exists. In recent times, AI based image investigation of tissue microarrays is proposed and employed to forecast the medical result of

CRC persons. Accordingly, ML might helpful to predict the lymph node metastasis (LNM) of T1 CRC by image investigation.

1.2 | Paper contributions

This paper presents a novel AI based fusion model for CRC disease diagnosis and classification, named AIFM-CRC. The presented AIFM-CRC model pri-

marily undergoes Gaussian filtering (GF) based noise removal and contrast enhancement as a preprocessing stage. Moreover, a fusion based feature

extraction process is carried out where the SIFT based handcrafted features and Inception v4 based deep features are fused together. Furthermore,

whale optimization algorithm (WOA) tuned deep support vector machine (DSVM) model is applied as a classification technique to compute the existence

of CRC. For assessing the proficient results analysis of the AIFM-CRC model, a complete simulation analysis is performed.

This paper is structured as follows. Section 2 briefs the background information and existing works related to the study. Then, section 3 dis-

cusses the proposed model and section 4 validates the performance of the proposed model. Finally, section 5 highlights the concluding remarks

of the study.

2 | BACKGROUND INFORMATION AND LITERATURE REVIEW

This section is two folded to discuss the basic concepts of AI and state of art works (Abdulsahib et al., 2021; Al-Waisy et al., 2021; Awan

et al., 2021; Jasim Hussein et al., 2021; Mohammed et al., 2021). Firstly, the recent technological developments made in AI are identified and dis-

cussed. Secondly, the existing CRC diagnosis and classification models available in the literature are reviewed.

2.1 | Technological developments in artificial intelligence

Data driven techniques depending upon ML received main attention for advanced growths in AI. Assuming the image classifiers as a demonstra-

tive instance, to create ML methods, labelled trained information (i.e., image marked up by respective class names) are gathered and utilized for
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model optimization via estimating efficiency from trained information. The previous techniques typically separated the model into feature extrac-

tion and classification, where feature extraction is a vital feature of the image and next categorizes an image based on feature extraction. The ML

techniques perform learning processes however, the extracted feature portion frequently needs human activities for engineering (Lowe, 2004). In

recent times, DL, that includes designing two (i.e., classifier portions and feature extraction) combined with DNN and studying the whole method

by ML technique, have gained major interest because of its effective enhancement in several applications. The DL surpasses human engineering

via learning robust features straightaway from trained information. In case of image and video domains, CNN is one of the conventional types of

DNN (LeCun & Bengio, 1995).

Over-fitting arises if learning machine is excessively adjusted to the training data. Two general approaches to avoid over-fitting are to gather

additional training data and constraints the complexity of the model (Abu-Mostafa et al., 2012). By the use of additional training data, the learning

method is able to gather additional generalized data, and restricting the difficulties of the method from excessively spending the capacity for

fitting the training data. Preferably, the collection of additional information is difficult, expensive, and assets intense. Contrastingly, restricting the

complexity is highly effective however it might occasionally result in “underfitting,” an occurrence in which a machine does not operate better

over trained information. Selecting the proper approach is therefore based on the ML problem, typically computed as (i.e., cross) validation to split

the dataset into training and testing parts. By the use of AI technologies, particularly DL methods (i.e., NN) are typically very difficult and requires

more data, it should capture generalization and over-fitting to account in the learning rate where the aim is to carry out CAD in colonoscopies on

original persons (i.e., invisible in training) with exclusive endoscopic features.

2.2 | Existing works on biomedical imaging based disease diagnosis

In current growths in IT, data classification techniques denote a significant study domain and have become helpful methods to assist medical diag-

nosis principles (Ting et al., 2020). The ML is a kind of data mining technique and is employed to investigate significant data hidden in the huge

quantity of information saved in medicinal records. Several distinct types of ML techniques are utilized for designing prediction methods to clas-

sify or predict CRC tumours. For instance, Tseng et al. (2014) utilized SVM and extreme learning machines (ELM) to forecast the recurrence

proneness of cervical tumours. Tseng et al. (2017) used ELM, SVM, Random forest (RF), and multivariate adaptive regression splines (MARS) to

recognize factors of risk and diagnosis ovarian tumour repetition. Ting et al. (2018) employed MARS, RF, ELM, and SVM techniques to identify

repetition in persons diagnose by CC. Chang and Chen (2019) developed a classifier method utilizing XGBoost as classification for forecasting sec-

ond major tumours in females with breast tumours. The XGBoost, SVM, RF, ELM, and MARS techniques have attained better enhancements for

building efficient prediction methods of tumours. Kopetz et al. (2015) proposed ColoPrint predictive technique for enhancing prognosis accuracy

autonomous of microsatellite state. Gao et al. Gao et al. (2016) proposed tumour hallmark-based genetics signature sets (i.e., CSS sets) for progno-

sis prediction and facilitate the detection of persons with phase II CC.

Automated identification of CRC by ML techniques has received attention among several scientists. Numerous investigations have utilized conven-

tional ML techniques to categorize CRC based microbiome instances (Wirbel et al., 2019). This technique contains numerous restrictions like lower accu-

racy and requires manual FS. The feature engineering is widely utilized to enhance the classifier efficiency of ML technique on series data. The study in

Topçuo�glu et al. (2020) noticed that the efficiency of DNN techniques to classify microbiome information is restricted if the instance size is small. Though

additional studies have displayed that utilizing DNN methods can enhance the classifier efficiency of CRC depending upon microbiome instances. Espe-

cially, data augmentation finds useful to resolve the curse of dimensionality that is predominant in series information (Simidjievski et al., 2019).

Researches which integrate feature engineering and data augmentation needs to be developed for CRC identification (Mulenga et al., 2021).

3 | THE PROPOSED CRC DIAGNOSIS MODEL

The working principle involved in the presented AIFM-CRC model is demonstrated in Figure 1. The figure showcases that the input image is pri-

marily preprocessed in two stages namely GF based noise removal and contrast enhancement. Followed by, the fusion of feature extraction pro-

cess takes place through SIFT and Inception v4 model. Finally, WOA-DSVM method is applied for determining the class label of the input

biomedical images. The WOA is applied to tune the parameters of the DSVM model.

3.1 | Data collection

The experimental validation of the AIFM-CRC model takes place using colorectal gland images collected from the Warwick-QU dataset (www.

warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/download). The dataset holds a set of 165 images including 74 benign and 91 malignant

tumour images respectively. It is obtained with the Zeiss MIRAX MIDI Scanner by employing an image data weight range of 716 kilobytes, 1.187
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kilobytes, and an image data resolution range of 567 � 430 pixels to 775 � 522 pixels with every individual pixel has a distance of 0.6 μm from

the original distance. Figure 2 shows the sample images.

3.2 | Image preprocessing

At the beginning stage, the proposed AIFM-CRC model performs preprocessing to remove the noise using GF technique and improve the contrast

using CLAHE model.

3.2.1 | Noise removal process

The design of two-dimensional GF is broadly utilized for noise removal and smoothing. The convolution operator is Gaussian operator and the

concept is attained with convolution. The Gaussian operators in one dimension can be represented by:

F IGURE 1 Working process of AIFM-CRC model

F IGURE 2 Sample images
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The optimum smoothing filter of image is located in the frequency as well as spatial fields, thus, fulfilling the unpredictability relationship as

Nandan et al. (2018):

ΔxΔω≥
1
2
: ð2Þ

The Gaussian operator in two dimensions (i.e., circularly symmetric) can be represented by:

G2D x,yð Þ¼ 1
2πσ2

e
� x2þy2

2σ2

� �
, ð3Þ

Let σ (Sigma) represent the SD of Gaussian function. It has a huge value and the image smoothing results are high. Here, x,yð Þ represent the Carte-

sian coordinates of image that display the window dimensions. These filters consist of multiplication and addition processes among image and ker-

nel, in which the image is denoted as matrix via value from 0 to 255 (i.e., 8 bits). The kernel in standardized square matrix value lies in the range of

0 and 1. The kernel is denoted as number of bits. In convolution procedure, the result in every bit of the kernel and component of image is later

divided by power 2.

3.2.2 | Contrast enhancement process

CLAHE is very effective in bio medicinal image investigation and is mainly utilized to enhance the contrast level of image. It needs two input

parameters such as clip limit and dimensional of sub windows. It recognizes grid size of window and value is attained from a topmost leftward cor-

ner part of the image in which calculation starts from earlier index of windows. Next, the size of region w2 and clip limits are estimated from gen-

eral values of an image. In case of every grid point, the H[I] nearby images are defined. Next, the histogram where existing over the level of

estimated clip limits are clipped and cumulative distribution function (CDF) is calculated. Then, for all pixels, the 4 nearby adjusting grid points are

attained. By employing the intensity rate, pixel index, and map functions of 4 grid points, the CDF measurement is evaluated. Next, the contextual

pixel N and recently established pixel are interpolated. A similar procedure is accompanied by transferring the window to image. However, this

procedure is ended and it yet achieves the last index of window (Shankar et al., 2021). This method does not store histogram that exceeds clipping

limits, but it could rearrange in an equivalent way for every histogram bins. Thus, the presented technique helps to enhance the segmentation out-

come of the applied test image.

3.3 | Fusion based feature extraction process

The preprocessed image is fed into the feature extractor where the fusion of handcrafted and deep features was taken place. The handcrafted

features are derived by the SIFT technique and the deep features are generated by the Inception v4 model. The fusion process takes place in such

a way that the classification performance can be increased.

3.3.1 | SIFT based handcrafted features

This technique is to detect and extract local feature descriptors that are unvarying to image scaling, rotation, and brightness. The SIFT model has

numerous benefits as given here. It is non-variance to orientation, uniform scaling, and partial unvarying to brightness variations. It has optimum

error toleration by some matching and better performance interms of speed. It is comfortable to integrate and produce helpful data. The detection

phase of SIFT features is separated into four stages:

1. Scale space extrema identification: In the initial phase, the image I x,yð Þ is convoluted by the GF at distinct scales in Equation (3) as given by:

L x,y,σð Þ¼G x,y,σð Þ� I x,yð Þ ð4Þ
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where, L x,y,σð Þ denotes convolution of image I x,yð Þ by GFs G x,y,σð Þ on scale σ. Variances among w Gaussian image on scale is kσ and σ made in

Equation (5) can be demonstrated as:

D x,y,σð Þ¼ L x,y,kσð Þ�L x,y,σð Þ ð5Þ

The variance on these 2 scales is known as a DoG (Difference of Gaussian).

2. Keypoint localization: In this phase, the key point also called Interest points are recognized as local maximum or minimum of the DoG image

over scale. Every pixel in the DoG image is related to eight adjacent pixels by a similar scale. It is required to perform accurate key point’ locali-
zation with removal point via predefined values as given by.

D bxð Þ¼Dþ 1
2 ∂DT

∂xbx ð6Þ

where bx is estimated by setting up the derivation D x,y,σð Þ to 0.

3. Orientation assignment: To attain invariant to orientation θ x,yð Þ and gradient magnitude, the m x,yð Þ is recalculated by Equation (7) and (8):

m x,yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ1,yð Þ�L x�1,yð Þð Þ2þ L x,yþ1ð Þ�L x,y�1ð Þð Þ2

q
ð7Þ

θ x,yð Þ¼ arctan
L x,yþ1ð Þ�L x,y�1ð Þ
L xþ1,yð Þ�L x�1,yð Þ

� �
ð8Þ

4. Key point descriptors creation: When a key point orientation is chosen, the feature descriptor is calculated as a class of orientation histogram

at 4�4 pixel adjacencies. Histogram comprises eight bins, thus SIFT feature vector is defined by 4�4�8 = 128 components and standard-

ized to distance unit. It is the characteristic of SIFT feature descriptor.

3.3.2 | Inception v4 based deep features

This technique varies from convolutional procedure in the investigation of max-pooling layer and manner of grids get trained. The network con-

sisting of five layers of weight like F3, M2, Cl, input, and output layers. Now, θ represent entire trained feature (i.e., weights measure), θ¼ θlf g
and l¼1,2,3,4, in which θl denotes variable set among I� lð ) th and lth layer. In CRC, all pixel instances are assumed as a two-dimension image

that has an equivalent height of 1. Henceforth, the size of input layer of n1 and n1ð , 1Þ indicate band count. The primary hidden conv layer Cl

extract n1�1 input information involving 20 kernels of size k1�1. Subsequently, the layer Cl that has 20�n2�1 nodes, whereas

n2 ¼n1�k1þ1. It consists of 20� k1þ1ð Þ trained variables among Cl and input layer. The M2 is considered as the kernel size is k2,1ð Þ and 2nd

hidden layer.

The M2 layer contains 20�n3�1 node, and n3 ¼ n2
k2
. The whole connected layer F3 comprises a set of n4 nodes while 20�n3þ1ð Þ�n4 dis-

plays readable variables from present to M2 layer. Later, the output layer comprises n5 node, and n4þ1ð Þ�n5 trained variables from the existing

layer F3. Therefore, the structure of proposed CNN classifier comprises group of 20� k1þ1ð Þþ 20�n3þ1ð Þ�n4þ n4þ1ð Þ�n5 training vari-

ables. Figure 3 demonstrates the structure of Inception v4 model (Szegedy et al., 2017).

The classifier of a specific CRC pixel requires a related CNN involving an abovementioned variable, in which n5 and n1 indicate spectral chan-

nel size and total extremal class of datasets, respectively. Nearly, k1 may be n1=9½ �, in which n2 ¼n1�k1þ1. Here, n3 indicates values between

30 and 40 and k2 ¼ n2=n3½ �:n4 stay constant to hundred. Henceforth, the choices are optimum and effective for general CRC data. In this struc-

ture, it is obviously noted that the layer Cl and M2 is noted as trained feature extraction for input CRC information, whereas layer F3 is consid-

ered as a trained classifier for feature extraction. Here, the CNN based Inception v4 methods are employed as feature extraction (Shankar

et al., 2021). The concluding result of sub sample is the actual feature of original data.
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3.4 | Image classification

When the fusion methods have extracted a useful set of feature vectors, the DSVM model is applied to carry out the classification process

(Le et al., 2021). This technique categorizes a binary problem using linear hyperplane via assuming trained set by n-training instances, such as

x1,y1ð Þ, x2,y2ð Þ,…, xn,ynð Þ, where xi �RN denotes N dimensional vector belonging to each class of yi � �1,þ1f g. The binary classifier problem gets

separated by linear decision functions which are given by,

f xð Þ¼w �xþb ð9Þ

where w�RN indicates vector, determining the orientation of the chosen hyperplane have to separate, and bR called as “bias.” An optimum

hyperplane is vital for partitioning two objects which are represented by,

yi w �xþbð Þ≥1 ð10Þ

The resolution to this problem is via resolving the limited optimize problem (either primal problem) as defined by,

F IGURE 3 Structure of inception v4
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minimise
1
2
w �wþC

Xn

i¼1
ξi ð11Þ

subjected to: yi w �xþbð Þ≥1�ξi,ξi >0, and 8i¼1,n, where C,0 <C <∞, called as penalty values/ regulation variable; however,ξi denotes slack

parameter. In nonlinear state, the optimization problem is defined as,

maximize
Xn

i¼1
αi�1

2

Xn

i¼1

Xn

j¼1
αiαjyiyjK xi ,xj

� � ð12Þ

subjected to:
Pn

i¼1αiyi ¼0, and, 0≤ αi ≤C, for i¼1,…,n. Since output decision function is given by,

f xð Þ¼ sign
Xn

i¼1
yiα

0
i K xi,xð Þþb0

h i
ð13Þ

α0i denotes support vector as K xi,xð Þ implies kernel function/kernel trick. The DSVM is expressed using multiple-layer structure which has many

hidden layers.

X1,X2,…,Xn indicates input layer data point. The multi hidden layer contains SVM11,SVM12,…,SVM1k ,SVM21,SVM22,…,SVM2k and

SVMn1,SVMn2,…,SVMnk but F1 Xð Þ,F2 Xð Þ,…,Fn Xð Þ denotes resulting layer point. To X1, the outcome is trained SVM11,SVM12,…,SVM1k as F1 Xð Þ. To
X2, the result of training SVM21,SVM22,…,SVM2k is F2 Xð Þ. To Xn, the result of training SVMn1,SVMn2,…,SVMnk as Fn Xð Þ. The network weight is

demonstrated as f xð Þ. All f xð Þ are calculated in the hidden layer by multi-layer connecting all input neurons with final neuron. The net input on hid-

den layer neurons is expressed as,

neth1 ¼ f111 xð Þ �X1þ f112 xð Þ �X2þ���þ f11n xð Þ �Xnþb1

neth2 ¼ f121 xð Þ �X1þ f122
xð Þ �X2þ���þ f11n xð Þ �Xnþb1

..

.

nethn ¼ f1n1 xð Þ �X1þ f1n2 �X2þ���þ f11n xð Þ �Xnþb1

ð14Þ

The logistic activation function is used to compute the outcome for every input neuron is expressed as,

outh1 ¼ 1
1þe�neth1

outh2 ¼ 1
1þe�neth2

..

.

outhn ¼ 1
1þe�nethn

ð15Þ

The outcome of hidden layer neuron is used as input to compute resulting layer neuron neto11…,neto1n
,neto21…,neto2n , and neton1…,netonn is

expressed as

neto11 ¼ f211 xð Þ:outh1þ f212 xð Þ:outh2þ���þ f21n xð Þ:outhnþb2

..

.

neto1n ¼ fk11 xð Þ:outh1þ fk12 xð Þ:outh2þ���þ fk1n xð Þ:outhnþb2

ð16Þ

neto21 ¼ f221 xð Þ:outh1þ f222
xð Þ:outh2þ���þ f22n xð Þ �outhnþb2

..

.

neto2n ¼ fk21 xð Þ:outh1þ fk22 xð Þ:outh2þ���þ fk2n xð Þ:outhnþb2

ð17Þ

neton1 ¼ f2n1 xð Þ:outh1þ f2n2 xð Þ:outh2þ���þ f2nn xð Þ:outhnþbk

..

.

netonn ¼ fkn1 xð Þ:outh1þ fkn2 xð Þ:outh2þ���þ fknn xð Þ �outhnþbk

ð18Þ

Consider the instance of neto11…,neto1n . The outcome is estimated by logistic activation function is given by,
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outo11 ¼
1

1þe�neto11

..

.

outo1n ¼
1

1þe�neto1n

ð19Þ

The error compute output outputo1 to X1, is calculated by subtracting computed output outputo1 from the identified value for F1 Xð Þ is given by,

E01 ¼
Xn

i¼1

1
2

F1 Xð Þ�outputo1ið Þ ð20Þ

Similarly, the method is estimated by summing all computed error Eo1,Eo2,…,Eon is represented by,

Etotal ¼ Eo1þEo2þ���þEon ð21Þ

Below the application of BP, every f xð Þ in network guarantees that original output is maximal to the targeted output F Xð Þ, so the error decrease

from every resultant neuron and entire network. For instance, f111 xð Þ is estimated as gradient to ∂Etotal is given by,

∂Etotal
f111 xð Þ ¼

∂neto11
∂f111 xð Þ�

∂outo11
∂neto11

� ∂Etotal
∂outo11

ð22Þ

The upgraded function f newð Þ
1l xð Þ is estimated by

f newð Þ
111

xð Þ¼ f111 xð Þ� λ� ∂Etotal
∂f111 xð Þ ð23Þ

where λ denotes learning rate to adapted the weight of network. In same technique, all weights in the network to be precise f xð Þ is upgraded, and
the method is repetitively iterative from Equation (14) until Etotal converts 0 / ∞.

3.5 | Hyperparameter optimization of DSVM model

For the optimal tuning of hyperparameters in the DSVM model, the WOA is applied to it. At the first stage, the initialization process takes place.

During the encircling prey process, the humpback whales have noticed the position of prey and surround them. For unclear places in the searching

area, the present optimal solution is considered as the prey. When the optimal searching agent is defined, the other searching agents refresh the

situation in the direction of optimal searching agent.

U
!¼ S:K

!�
tð Þ�K

!
tð Þ

			 			 ð24Þ

K
!

tþ1ð Þ¼ :K
!�

tbestð Þ�Y�U
!
:

where S¼2:r and Y¼2:I:r� I. The newly obtained solution for optimal fitness will consolidate the highlights which comprise fewer parameter

dependencies. It is not needed to define the initial set of parameters and step sizes for an ideal solution. Based on the functional fitness value over

iterations, the coefficient vector }y} can be achieved by receiving the adaptable probability function

y)Probability¼ C1 fmax� fxð Þ= fmax�Favgð Þ, fx ≥ Favg
C3, fx ≤ favg:



ð25Þ

where, fminand fmax are the minimum and maximum values of the fitness function, whereas C1 and C3 ranges in the interval of 0 and 1. The loca-

tion in the direction of ideal solution is dynamically changed by the functional fitness. Next, to define the bubble-net nature of the humpback

whales, two improved schemes are utilized. The bubble-net mechanism takes place by the use of exploitation and exploration phases.
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In spiral form is utilized among the position of whale as well as prey for mimicking the helix-framed progress of humpback whales that is

referred as:

K
!

tþ1ð Þ¼ ebt:cos 2π:yð Þ:U!
0
þK

!�
tð Þ: ð26Þ

It can be noticeable humpback whales swim approximately the prey inside the contracting circle and beside the winding moulded approach. In

order to illustrate this synchronous performance, the probability of 50% is predictable to opt among the contracting enclosed and spiral system

for refreshing the condition of whales amid optimize. The mathematical process is:

K
!

tþ1ð Þ¼ K
*

tð Þ�y::U
!

ifp<0:5

U
!0
:ebs:cos 2πsð ÞþK

!
tð Þ if p≥0:5,

8<
: ð27Þ

where y!random value among �1 to 1, show there synchronous performance that is allowed which there are probabilities of half to pick among

together the contract surrounding method and twisted method for reviving the condition of whales in midst of optimizing.

In comparative method, with respect to assortment of the vector, is employed for searching to prey (exploration). Everything to be consid-

ered, the humpback whales appear heedlessly as depicted by position of together. Consecutively, to take entire analyser, the request administra-

tor is invigorating by aimlessly-picked search specialist rather than an optimal search operator

U
!¼ S

!
:�Krand�K

!			 			 ð28Þ

K tþ1ð Þ¼K
!

rand� Y
*

:U
!
: ð29Þ

Therefore, the random values are utilized predominantly than 1 or under �1 to make search agent for moving distant in reference whale.

4 | PERFORMANCE VALIDATION

This section assess the CRC diagnostic performance of the proposed AIFM-CRC model on the applied dataset. The proposed model is simulated

using Python 3.6.5 tool. The parameter setting of the AIFM-CRC model is given as follows: batch size: 128, learning rate: 0.001, epoch count:

500, and momentum: 0.2.

Table 1 and Figures 4 and 5 investigates the classification results analysis of the AIFM-CRC model under varying validation processes. The

obtained values denoted that the AIFM-CRC model performance is increased with an increase in training dataset size. For instance, on the applied

50:50 validation, the AIFM-CRC model has obtained a sensitivity of 92.90%, specificity of 94.20%, accuracy of 94%, positive predicted value

(PPV) of 94.60%, and negative predicted value (NPV) of 95.40%. At the same time, on the applied 60:40 validation, the AIFM-CRC method has

attained a sensitivity of 92.20%, specificity of 96.30%, accuracy of 95.10%, PPV of 95.30%, and NPV of 96.30%. In line with, the applied 70:30

validation, the AIFM-CRC approach has achieved a sensitivity of 91.90%, specificity of 96.50%, accuracy of 95.80%, PPV of 95.40%, and NPV of

96.60%. Accordingly, on the applied 80:20 validation, the AIFM-CRC manner has reached a sensitivity of 93.40%, specificity of 97.30%, accuracy

of 96.50%, PPV of 96.40%, and NPV of 97.10%. Meanwhile, on the applied 90:10 validation, the AIFM-CRC model has achieved a sensitivity of

TABLE 1 Result analysis of proposed AIFM-CRC method on various validation models

Training/testing Sensitivity Specificity Accuracy PPV NPV

50:50 92.90 94.20 94.00 94.60 95.40

60:40 92.20 96.30 95.10 95.30 96.30

70:30 91.90 96.50 95.80 95.40 96.60

80:20 93.40 97.30 96.50 96.40 97.10

90:10 94.70 98.70 97.80 97.40 97.80

10-Folds 96.40 98.90 97.90 97.60 98.30

Average 93.58 96.98 96.18 96.12 96.92
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94.70%, specificity of 98.70%, accuracy of 97.80%, PPV of 97.40%, and NPV of 97.80%. Eventually, on the applied 10 folds, the AIFM-CRC meth-

odology has obtained a sensitivity of 96.40%, specificity of 98.90%, accuracy of 97.90%, PPV of 97.60%, and NPV of 98.30%. At last, it is noticed

that the AIFM-CRC method has attained a maximum average sensitivity of 93.58%, specificity of 96.98%, accuracy of 96.18%, PPV of 96.12%,

and NPV of 96.92%.

Table 2 and Figure 6 made a detailed comparative CRC detection results analysis of the AIFM-CRC model (Choi et al., 2020; Sarwinda

et al., 2021).

On examining the CRC detection results interms of sensitivity and specificity, the obtained values portrayed that the Endoscopist (novice)

model has reached the least sensitivity and specificity of 77.98% and 92.63% respectively. At the same time, the ResNet18 model has achieved

slightly increased results over the earlier one with the sensitivity and specificity of 83% and 87% correspondingly. Besides, the ResNet-50 model

has showcased closer results to the ResNet18 model with the sensitivity and specificity of 83% and 93% respectively. Followed by, moderate sen-

sitivity and specificity of 85% and 95% have been exhibited by the Endoscopist (expert) whereas a somewhat increased sensitivity and specificity

of 86.53% and 96.6% has been accomplished by the Inception-v3 model. Moreover, the ResNet model has depicted manageable outcomes with

F IGURE 4 Result analysis of AIFM-CRC model with distinct measures

F IGURE 5 PPV and NPV analysis of AIFM-CRC model
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the sensitivity and specificity of 86.64% and 96.51% correspondingly. Though the DenseNet-161 model has led to a competitive sensitivity and

specificity of 87.24% and 96.74%, the AIFM-CRC model has outperformed the other compared methods with the sensitivity and specificity of

93.58% and 96.98% correspondingly.

On investigative the CRC detection outcomes with respect to accuracy, PPV, and NPV, the achieved values exhibited that the Endoscopist

(novice) model has achieved to minimum accuracy, PPV, and NPV of 77.91%, 78.39%, and 92.76% correspondingly. Simultaneously, the ResNet18

technique has attained somewhat improved outcomes over the earlier one with the accuracy, PPV, and NPV of 85%, 85.42%, and 87.26% respec-

tively. Besides, the Endoscopist (expert) methodology has illustrated closer outcomes to the ResNet18 model with the accuracy, PPV, and NPV of

85%, 85.74%, and 95.05% correspondingly. On continuing with, a moderate accuracy, PPV, and NPV of 88%, 86.79%, and 93.49% has been

depicted by the ResNet50 whereas a somewhat higher accuracy, PPV, and NPV of 89.45%, 87.10%, and 96.59% has been accomplished by the

ResNet approach. Also, the Inception-v3 method has showcased manageable outcomes with the accuracy, PPV, and NPV of 89.65%, 87.39%, and

96.68% correspondingly. However, the DenseNet-161 manner has led to a competitive accuracy, PPV, and NPV of 89.95%, 87.59%, and 96.76%,

the AIFM-CRC methodology has demonstrated the other compared techniques with the accuracy, PPV, and NPV of 96.18%, 96.12%, and 96.92%

correspondingly.

The resulting experimental values pointed out the betterment of the AIFM-CRC model by achieving a maximum accuracy of 96.18%. By

looking into the above-mentioned tables and figures, it is evident that the proposed AIFM-CRC model is found to be an effective tool for CRC

diagnosis using X-ray images due to the inclusion of GF technique, CLAHE, Inception v4, and optimal parameter tuning using WOA.

TABLE 2 Comparative analysis of proposed AIFM-CRC with existing techniques

Methods Sensitivity Specificity Accuracy PPV NPV

Proposed AIFM-CRC 93.58 96.98 96.18 96.12 96.92

Inception-v3 86.53 96.60 89.65 87.39 96.68

ResNet Model 86.64 96.51 89.45 87.10 96.59

DenseNet-161 87.24 96.74 89.95 87.59 96.76

Endoscopist (novice) 77.98 92.63 77.91 78.39 92.76

Endoscopist (expert) 85.00 95.00 85.00 85.74 95.05

ResNet 18 83.00 87.00 85.00 85.42 87.26

ResNet 50 83.00 93.00 88.00 86.79 93.49

F IGURE 6 Comparative analysis of AIFM-CRC model with existing methods

12 of 15 MANSOUR ET AL.



5 | CONCLUSION

This paper has presented a novel AIFM-CRC based fusion model for CRC disease diagnosis and classification. At the beginning stage, the pro-

posed AIFM-CRC model performs preprocessing to remove the noise using GF technique and improve the contrast using CLAHE model. The

preprocessed image is fed into the feature extractor where the fusion of handcrafted and deep features was taken place. The handcrafted fea-

tures are derived by the SIFT technique and the deep features are generated by the Inception v4 model. The fusion process takes place in such a

way that the classification performance can be increased. When the fusion methods have extracted a useful set of feature vectors, the WOA-

DSVM method is applied to carry out the classification process. For the optimal tuning of hyperparameters in the DSVM model, the WOA is

applied to it. For assessing the proficient results analysis of the AIFM-CRC model, a complete simulation analysis is performed. The resulting

experimental values pointed out the betterment of the AIFM-CRC model by achieving a maximum accuracy of 96.18%. As a part of future exten-

sion, the learning rate scheduling technique can be incorporated to the proposed AIFM-CRC model.
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