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Background and objectives: Deep learning techniques are the state-of-the-art approach to solve image clas- 

sification problems in biomedicine; however, they require the acquisition and annotation of a consider- 

able volume of images. In addition, using deep learning libraries and tuning the hyperparameters of the 

networks trained with them might be challenging for several users. These drawbacks prevent the adop- 

tion of these techniques outside the machine-learning community. In this work, we present an Automated 

Machine Learning (AutoML) method to deal with these problems. 

Methods: Our AutoML method combines transfer learning with a new semi-supervised learning proce- 

dure to train models when few annotated images are available. In order to facilitate the dissemination of 

our method, we have implemented it as an open-source tool called ATLASS. Finally, we have evaluated 

our method with two benchmarks of biomedical image classification datasets. 

Results: Our method has been thoroughly tested both with small datasets and partially annotated 

biomedical datasets; and, it outperforms, both in terms of speed and accuracy, the existing AutoML tools 

when working with small datasets; and, might improve the accuracy of models up to a 10% when work- 

ing with partially annotated datasets. 

Conclusions: The work presented in this paper allows the use of deep learning techniques to solve an im- 

age classification problem with few resources. Namely, it is possible to train deep models with small, and 

partially annotated datasets of images. In addition, we have proven that our AutoML method outperforms 

other AutoML tools both in terms of accuracy and speed when working with small datasets. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Deep learning techniques, and namely convolutional neural net- 

orks, have become the state-of-the-art approach to solve image 

lassification problems in a wide variety of fields such as biol- 

gy [1] , security [2] , or medicine [3] . Just to name a few examples

n the biomedical field, deep learning has been applied for classify- 

ng lung nodules on computed tomography images [4] , skin cancer 

mages [5] , or breast cancer histology images [3] ; and, in general, 

eep learning techniques provide an effective and efficient compu- 

ational tool to deal with the growth in biomedical data produced 

ue to the advances of high-throughput technologies [6] . However, 

uilding image classification models using deep learning methods 

ight be challenging for researchers outside the machine-learning 

ommunity. Namely, deep learning techniques require thousands of 

nnotated images, and acquiring and annotating such an amount 
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f images might be difficult [7] and requires specialised knowl- 

dge [8] . Moreover, training a deep learning model poses several 

echnical issues like installing and using deep learning libraries; 

hoosing several hyperparameters, such as the architecture of the 

etwork or the optimisation algorithm; and organising and pro- 

essing the data in a proper way [9] . 

The deep learning community has already tackled these chal- 

enges. Techniques like transfer learning [10] and data augmen- 

ation [11] have shown that it is feasible to train deep learn- 

ng models with a limited amount of data and computational re- 

ources [10] . In addition, semi-supervised techniques, like data and 

odel distillation [12] , take advantage of unlabelled data for train- 

ng; and, therefore, reduce the burden of annotating images [13] . 

oreover, there are several Automated Machine Learning (AutoML) 

echniques that automatically select the best model to solve a task 

ithout user intervention [14] . In spite of these advances, the con- 

truction of image classification models using deep learning meth- 

ds is far from trivial. Techniques like transfer learning, data aug- 

entation, or data and model distillation require a considerable 

https://doi.org/10.1016/j.cmpb.2020.105782
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2020.105782&domain=pdf
mailto:adines@unirioja.es
https://doi.org/10.1016/j.cmpb.2020.105782
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xperience working with several deep learning libraries and tools; 

nd their use produce, in many cases, pipeline jungles [9] . Neither 

utoML tools are the panacea, since they are usually computation- 

lly intensive and also require some coding experience to use and 

onfigure the libraries that implement the AutoML methods. Fur- 

hermore, AutoML tools that apply semi-supervised learning has 

een only developed for structured data [15] , and it does not exist, 

p to the best of our knowledge, an AutoML tool for construct- 

ng image classification models that incorporates semi-supervised 

earning methods. 

In this work, we seek to overcome the aforementioned prob- 

ems by providing an AutoML pipeline that combines transfer 

earning with data and model distillation in a fully automated way, 

nd only using limited resources. In particular, the contributions of 

his work are the following: 

• We present an automatic method for training classification 

models that combines transfer learning, and a new semi- 

supervised learning method based on the notions of data and 

model distillation. 
• We conduct a thorough analysis for our method and show 

its performance compared with other AutoML tools for con- 

structing image classification models when working with small 

datasets — to this aim, we employ a standard benchmark for 

testing biological image classification algorithms [16] . 
• We show the benefits of our semi-supervised learning method 

when dealing with partially annotated datasets of biomedi- 

cal images — we propose a new benchmark for testing semi- 

supervised learning algorithms in this context. 
• Finally, we present ATLASS, a user-friendly and open-source Au- 

toML tool that allows non-expert users to easily employ our 

method to construct their own image classification models. AT- 

LASS is the first AutoML tool for constructing image classifica- 

tion models that incorporates semi-supervised learning. 

The rest of this paper is organised as follows. In the next sec- 

ion, we provide the necessary background to understand the rest 

f the paper. Subsequently, we present our method and tools in 

ection 3 , and evaluate them in Section 4 . The paper ends with a

ection of conclusions and further work. 

. Background 

This work can be framed in the context of AutoML re- 

earch [14] . AutoML techniques aim to democratise machine learn- 

ng by simplifying the construction and usage of models for do- 

ain experts with a limited machine learning background. Since 

here are dozens of alternatives for each step of a machine learning 

ipeline (for instance, feature extraction, model selection or hyper- 

arameter optimisation), AutoML techniques try to find the best 

onfiguration for each particular problem. In the context of im- 

ge classification, AutoML techniques are mainly focused on Neu- 

al Architecture Search (NAS); that is, automatically designing neu- 

al deep architectures [17] . Even if this approach has outperformed 

anually designed architectures [18] , the adoption of NAS tech- 

iques by non-expert users to construct recognition models is far 

rom trivial; mainly, because these techniques are computation- 

lly intensive (for instance, NasNet takes 1800 GPU days [18] , and 

moebaNet takes 3150 GPU days [19] ) and require huge datasets 

usually, datasets like ImageNet [20] or CIFAR [21] , that contain 

undred of thousands, or even millions, annotated images are em- 

loyed). In addition, NAS techniques require some prior knowledge 

bout typical properties of architectures to simplify the search [17] , 

nd also require experience to configure the tools implementing 

hose methods. Due to these reasons, NAS methods and tools are 

ifficult to adopt in the biomedical context, and it is necessary the 
2 
evelopment of new AutoML methods and tools that work with a 

imited amount of annotated images and resources. 

In spite of not being part of the AutoML toolbox, there are 

ome well-established deep learning techniques that, generally, 

roduce accurate classification models, are applicable in a wide va- 

iety of contexts, and do not require so many resources as AutoML 

ools [22,23] . Among those procedures, transfer learning stands out 

hen working with small datasets. Transfer learning [10] is a set of 

echniques that reuse a model trained in a source task in a new 

arget task — usually the data available in the target task are much 

maller than in the source task [24,25] . Transfer learning tech- 

iques are based on the idea that convolutional neural networks 

re designed to learn a hierarchy of features; in particular, the ini- 

ial layers of the network focus on generic features that are com- 

on for most images, whilst the later layers focus on specific fea- 

ures for the task at hand. Fine-tuning is a transfer learning tech- 

ique that freezes the initial layers trained on a source task, while 

etraining the final layers for the specific problem. In this way, the 

eneric features learned in the source task are re-used, and the 

pecific features for the target task are learned. This approach has 

een successfully employed to reduce the amount of resources re- 

uired to train state-of-the-art models. When working with a lim- 

ted amount of images, transfer learning is usually combined with 

ata augmentation. 

Data augmentation [11] is a technique that generates new train- 

ng samples from the original dataset by applying transformations 

hat do not alter the class of the data. This method has proven to 

e effective to improve the accuracy of models, and to reduce their 

eneralisation error [26] . In addition, data augmentation can also 

e employed at test time by feeding several transformations of a 

ample to a trained model, and ensembling the predictions to ob- 

ain the final result. This procedure is known as test-time augmen- 

ation (TTA) [27] . TTA and ensemble methods are the basis of two 

emi-supervised learning techniques known as data and model dis- 

illation. Semi-supervised learning methods have received growing 

ttention in recent years since they provide a mean of using un- 

abeled data to improve model performance when large-scale an- 

otated data is not available [28–31] . These techniques might be 

elpful when we have access to a large corpus of images, but it is 

ifficult, or time-consuming, to annotate them — for instance, in 

he biomedical context [32] . 

Data and model distillation are two forms of self-training [13] , 

 special kind of semi-supervised learning technique. In the case 

f data distillation [12] , given a model trained on manually la- 

elled data, this technique applies such a model to multiple trans- 

ormations of unlabelled data, ensembles the multiple predictions, 

nd, finally, retrains the model on the union of manually labelled 

ata and automatically labelled data. In the case of model distilla- 

ion [33] , several models are employed to obtain predictions of un- 

abelled data; subsequently, those predictions are ensembled, and 

sed to train a new model. Both techniques can also be combined 

s shown in [12] . 

Even if the aforementioned techniques have proven to be use- 

ul in several contexts; it might be challenging to use them since 

hey can be applied in several ways (for instance, there are sev- 

ral base architectures that can be employed for transfer learn- 

ng, or transformation techniques for data augmentation). In addi- 

ion, there is not a single library that provides all these techniques, 

nd connecting different libraries might be difficult for non-expert 

sers, and might produce pipeline jungles in the case of expert 

sers. In this paper, we tackle these problems by providing an Au- 

oML method to construct image classification models by combin- 

ng transfer learning and a new semi-supervised method based on 

ata and model distillation. Moreover, we implement our method 

n a user-friendly tool that considerably reduces the burden of us- 

ng transfer-learning and semi-supervised learning methods. 
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Fig. 1. Pseudocode of the workflow of our method. 
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. Methods 

In this section, we provide a detailed explanation of our AutoML 

ethod, and the tool where we have implemented it. We start by 

resenting the general workflow of our method. 

.1. Workflow 

Given a dataset of annotated images ( X, Y ), where for ( x, y ) ∈ ( X,

 ) x is an image and y is the associated category of x ; and a dataset

f unlabelled images X̄ , our method consists of the following steps. 

We start by training m models { M 1 , . . . , M m 

} using ( X, Y ).

ow, for each image x̄ ∈ X̄ and using t image transformations T = 

 T 1 , . . . , T t } , we generate t + 1 new images T 0 ( ̄x ) , T 1 ( ̄x ) , . . . , T t ( ̄x ) ,

here T 0 is the identity. Subsequently, we apply each model M i to 

ach T j ( ̄x ) and obtain as a result ( ̄y i, j , p̄ i, j ) where ȳ i, j is the class

redicted by M i for T j ( ̄x ) , and p̄ i, j is its associated confidence. After 

hat, we ensemble the predictions { ( ̄y i, j , p̄ i, j ) } i ∈ [1 , ... ,m ] , j∈ [0 , ... ,t] using 

he weighted majority voting scheme, where the weights are the 

onfidence score of each prediction, and obtain ( ̄y , p̄ ) . Finally, if p̄

s over a fixed threshold, then we add { ( ̄x , ̄y ) } to ( X, Y ) and remove

¯ from X̄ ; and, the process is iterated — the pseudocode for this 

orkflow is provided in Fig. 1 . The process ends when there are 

ot unlabelled images — this condition can be replaced by others, 

uch as a maximum number of iterations, or a condition on model 

mprovement. The result of this process is a model; in particular, 

he model with the best performance with respect to an indepen- 

ent labelled test set, in the last iteration. A graphical representa- 

ion of one of the iterations of our workflow is depicted in Fig. 2 . 

It is worth nothing that the aforementioned process might be 

ime consuming if there are lots of unlabelled images, several mod- 

ls, or iterations. To deal with this issue, our method can be par- 

icularised in several ways, reducing the time needed to execute 

t. Namely, starting from the general process previously explained, 

even particular cases can be defined. 
3 
No Distillation (N.D.): This is the most basic case and occurs 

hen there are not unlabelled images in the original dataset, that 

s, X̄ = ∅ . Then, the process is reduced to train and select the best

odel model with respect to an independent test set. 

Data Distillation without thresholding (D.D.) : This case appears 

hen, instead of having a set of base models, we only train one 

odel (M = { M 1 } ) , and we do not set a threshold; that is, the

hreshold value is 0. In this case, the process does not iterate, since 

ll the unlabelled images are annotated in the first iteration. This 

s the data distillation method presented in [12] . 

Iterative Data Distillation (I.D.D.): As in the previous case, a sin- 

le model is trained (M = { M 1 } ) ; but we establish a threshold to

e passed, which leads us to have, probably, several iterations. 

Model Distillation without thresholding (M.D.): This case starts by 

raining a set of models; but, we do not perform test-time aug- 

entation of the unlabelled images, that is, (T = { T 0 } ) , and only

nsemble the model predictions of the given image. In addition, 

he value of the threshold is set to 0; that is, we do not have an

terative process. This is the model distillation procedure presented 

n [33] . 

Iterative Model Distillation (I.M.D.): In this case, we also start 

y training a set of models, and as in the previous case, we do 

ot perform test-time augmentation (T = { T 0 } ) . The main differ-

nce with the previous case is that we establish a threshold, which 

eads us to have an iterative process. 

Model + Data Distillation without thresholding (M.D.D): This case 

s very similar to the general workflow. We use a set of models 

nd test-time augmentation to annotate the unlabelled images. The 

nly difference is that the threshold is set to 0; and, therefore, we 

o not have an iterative process. 

Iterative Model + Data Distillation (I.M.D.D): This is the general 

orkflow explained previously. 

Since our final aim is the development of an AutoML method, 

 key aspect that remains to be explained is how to train the best 

ossible model. To this aim, we employ transfer learning as ex- 

lained in the following subsection. 
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Fig. 2. Workflow of an iteration of our semi-supervised learning method. Inputs of the iteration : set of manually labelled images, set of automatically labelled images and 

set of unlabelled images. Outputs of the iteration : set of automatically labelled images and set of unlabelled images. Output of the process : Trained model. 
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.2. Training the models 

In our method, we train each model applying fine-tuning from 

he ImageNet challenge and following the two-stage procedure 

resented in [22] — in this way, we take advantage of the nu- 

erous descriptors learned from the Imagenet dataset. In the first 

tage of the training process, we replace the last layers of the 

odel (that is, the layers that give us the classification of the im- 

ges), with new layers adapted to the number of classes of each 

articular dataset. Then, we train these new layers with the data of 

ach particular dataset for two epochs. Since training only the last 

ayers of a model may not be enough to obtain a good performance 

n the new dataset, it is necessary to conduct a second stage. In the 

econd stage, we unfreeze the whole model and retrain all the lay- 

rs of the model with the new data for eight epochs. When train- 

ng all layers of the model, we should be careful with the learn- 

ng rate used. The lower layers of the model have the most ba- 

ic descriptors (colours, borders, shapes, . . . ), which are common 

or all images, and as we go up of our model, the descriptors be-

ome more specific to the used data. Thus, the idea is to modify 

he lowest descriptors minimally, and make a greater modification 

n the upper layers of the model. This is translated into using a 

ow learning rate in the initial layers and a higher learning rate in 

he following layers. Then, to train our models, we use a learning 

ate slice ( lr 
100 , lr) , that starts at a low learning rate ( lr 

100 ) for the

ower layers and increases as we move through the layers until we 

each lr in the higher layers. In addition, we look for this specific lr

hat improves the performance of our model; i.e., we select lr that 

ecreases the loss to the minimum possible value using the ap- 

roach presented in [34] . In particular, we select the learning rate 
4 
ith the lowest loss value, and, in case that this learning rate is 

oo small ( lr < 1 e −5 ), we change its value to 1 e −3 . 

As we will show in Section 4 , using this training procedure 

nd our semi-supervised method, we can produce accurate mod- 

ls; however, implementing and using these techniques might be 

hallenging for non-expert users. Therefore, we have developed a 

ool that facilitates the construction of image classification models 

sing our techniques without writing a single line of code. 

.3. Suite of tools 

We have developed an open-source tool, called ATLASS, that 

mplements our method, and guides the user in all the stages of 

he construction of an image classification model; namely, it helps 

o annotate the images, train a model, test it, and finally use it. 

TLASS is available at https://github.com/adines/ATLASS . 

The first step for building an image classification model con- 

ists in annotating a set of images. To this aim, we have developed 

 graphical user interface (GUI) implemented in Java that provides 

ll the necessary features to annotate a dataset of images. This in- 

ludes the functionality to visualise and organise the images by 

ategories, and manage the categories (that is, add, remove, and 

dit categories). The workflow of this application is straightfor- 

ard. When the GUI starts, the application asks the users to se- 

ect the folder containing the dataset of images, the location where 

he annotated dataset will be saved and the number of categories 

f the dataset. Then, the application automatically loads the im- 

ges of the dataset and shows to the users the corresponding in- 

ormation. From this window, the user can conduct the annotation 

https://github.com/adines/ATLASS
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Table 1 

Description of the datasets employed in our experiments. The first 11 

datasets were studied using only the No Distillation case, and the rest 

using the different variants of our semi-supervised learning method. 

Dataset Number of Images Number of Classes 

Binucleate 40 2 

C. Elegans 252 4 

Cho 340 5 

2D-Hela 860 10 

Liver aging 850 4 

Liver gender (AL) 522 2 

Liver gender (CR) 256 2 

Lymphoma 375 3 

Pollen 630 7 

RNAI 200 10 

Terminal Bulb aging 970 7 

Blindness [48] 3662 5 

Chest X Ray [49] 2355 2 

Fungi [50] 1204 4 

HAM 10,000 [51] 10015 7 

ISIC [52] 1500 7 

Kvasir [53] 8000 8 

Open Sprayer [54] 6697 2 

Plants [55] 5500 12 

Retinal OCT [49] 84484 4 

Tobacco [56] 3492 10 
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rocess. Once the dataset has been annotated, or at least partially 

nnotated, the training process can start. 

The GUI includes a wizard that allows the users to configure 

he training process. First of all, the wizard detects whether there 

re unlabelled images in the dataset. If the dataset has been fully 

nnotated, the users can select the networks that will be trained 

nd compared using the no distillation procedure. If the dataset 

ontains unlabelled images, the wizard asks for the distillation 

ethods that will be applied. If the users select a data distillation 

ethod, they can select the augmentation techniques (the com- 

lete list of augmentations is in the project webpage); if a model 

istillation method is chosen, the users can decide the base net- 

orks to be trained; and, if an iterative process is selected, the 

sers must fix a threshold value. The output of the wizard is a zip

le, containing the organised dataset, and a Jupyter notebook with 

he necessary instructions to be executed. 

Jupyter notebooks are interactive documents that can include 

xecutable code together with explanations [35] . The Jupyter note- 

ook generated by our wizard employs the FastAI library [22] to 

mplement the workflow presented in Section 3.1 — other libraries 

ike OpenCV [36] are also employed. The Jupyter notebook gener- 

ted by the wizard can be run in the users’ local computer pro- 

ided that they have a GPU; and, since this might not be the case, 

he notebook can also be uploaded to Google Colaboratory [37] or 

ther cloud environments. 

Finally, the trained models can be used in different ways. One 

ay to use these models is based on the same method used to 

rain them: using a Jupyter notebook, either in Google Colabo- 

atory or locally. Another way would be using the DeepClas4Bio 

PI [38] , an extensible API that facilitates the use of deep learn- 

ng models. This API allows users to include their models easily 

n the API and use them. In addition, thanks to DeepClas4Bio, we 

an use our models from different image processing programs like 

mageJ [39] , Icy [40] or ImagePy [41] . 

As we have indicated previously, ATLASS is highly configurable; 

ence, some users may feel lost when using it. To deal with this 

roblem, we have conducted a study with two objectives: evaluate 

ur methods and select the default techniques to use. 

. Results 

In this section, we conduct a thorough analysis for our meth- 

ds in two different scenarios. In particular, we test our methods 

n small annotated datasets, see Section 4.1 ; and in partially anno- 

ated datasets, see Section 4.2 . 

.1. AutoML for small annotated datasets 

In the first scenario, we analyse the performance of our meth- 

ds with small, but fully annotated, datasets. In these experiments, 

e can only employ the No Distillation case of our method, since 

here are not unlabelled images; but, we can search the best base 

etwork among several alternatives. 

In this study, we have compared our approach with other 

utoML tools that can construct image classification models di- 

ectly from the datasets of images. Specifically, we have compared 

our AutoML tools (AutoKeras [42] , Devol [43] , Ludwig [44] and 

ndCharm [45] ) with our no distillation approach using the 

eep learning architectures: Resnet [46] , in particular, ResNet34, 

esNet50 and ResNet101; and DenseNet [47] with DenseNet121. 

he datasets employed for the comparison are the 11 datasets pre- 

ented in [16] , and described in Table 1 . 

Each dataset was split using a 75% for training and a 25% for 

esting. The result of the comparison of the AutoML tools can be 

een in Table 2 and Fig. 3 . We can notice that our method stands
5 
ut for all the analysed metrics. We have used Wilcoxon signed- 

ank tests to compare the accuracy results obtained by our tool 

ith respect to AutoKeras, Devol, Ludwig, and WndCharm AutoML 

ools. Significant differences with large effect sizes (with z = -2.80, 

 = 0.005, r = -0.60; z = -2.93, p = 0.003, r = -0.63; z = -2.93,

 = 0.003, r = -0.63; and z = -2,67, p = 0.008, r = -0.57; respec-

ively) were obtained in all the cases. Similar results are achieved 

or other metrics, see Fig. 3 and Appendix A . This is mainly due 

o the fact that AutoKeras, Devol and Ludwig employ Neural Ar- 

hitecture Search algorithms [17] , a family of techniques that re- 

uire large corpora of data to be trained; and WndCharm employs 

anually engineered features, that are fixed for all the dataset in- 

ependently of the concrete problem. In contrast, our method is 

dapted to each particular problem, and applies transfer learning 

o reuse the knowledge learned from big datasets. This approach 

orks better than the others when dealing with small datasets 

ince most of the features learned from a big dataset can be reused 

or the smaller ones; this is especially true for low-level fea- 

ures, like lines or edges, that are common for all kinds of images 

57] . 

In addition, our AutoML method is faster than the other tools 

see the last column of Table 2 ). This is due to the fact that the

eural architecture search methods of AutoKeras, Ludwig, and De- 

ol are time-consuming, and WndCharm runs on the CPU instead 

f the GPU. All the experiments were conducted in the environ- 

ent provided by Google Colab (2-core Xeon 2.3 GHz, 13 TB Ram, 

nd a Tesla P100 GPU). 

.2. Partially annotated datasets 

In the second scenario, we test our semi-supervised method 

n the biomedical setting. Evaluation of semi-supervised learn- 

ng methods is done mostly on the MNIST [58] , CIFAR [21] or 

VHN [59] datasets; however, images in these datasets are usu- 

lly small (less than 50 × 50 in resolution) and come from nat- 

ral settings. Therefore, these datasets are not suitable for test- 

ng semi-supervised learning methods in the biomedical context. 

n this work, we propose a benchmark of 10 partially annotated 

iomedical datasets, described in Table 1 , and evaluate our method 

sing such a benchmark. 

For our study, we have split the datasets of the benchmark into 

wo different sets: a training set with the 75% of images and a 
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Table 2 

Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, and our AutoML method for automatically constructing models 

for 11 image classification problems using the accuracy metric. The last column provides the mean time required for training the models 

with each tool. The best results are highlighted in bold face. 

Binu. CEle. Cho Hela Liver Liver Liver Lymp. Pollen RNAI Term. Mean Mean Time 

aging (AL) (CR) (S.D.) (min) 

AutoKeras 0.63 0.66 0.91 0.78 0.91 0.69 1.00 0.73 0.94 0.52 0.49 0.75 (0.17) 30 

Devol 0.73 0.42 0.61 0.38 0.33 0.81 0.71 0.56 0.56 0.20 0.33 0.51 (0.19) 16 

Ludwig 0.54 0.48 0.64 0.51 0.33 0.65 0.90 0.57 0.58 0 0.50 0.52 (0.22) 31 

WndCharm 1.00 0.60 0.95 0.85 0.92 1.00 0.97 0.79 0.96 0.68 0.50 0.84 (0.17) 53 

Ours 1.00 1.00 0.97 0.99 0.98 1.00 1.00 0.95 0.97 0.77 0.73 0.94 (0.10) 16 

Fig. 3. Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, and our AutoML method for automatically constructing models for 11 image classification 

problems using precision, recall and F1-score. 
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esting set with the 25% of the images. With this division, we per- 

orm an analysis of the seven processes explained in Section 3.1 : 

o Distillation (N.D.), Data Distillation (D.D.), Iterative Data Distil- 

ation (I.D.D), Model Distillation (M.D.), Iterative Model Distillation 

I.M.D.), Model + Data Distillation (M.D.D.) and Iterative Model + 

ata Distillation (I.M.D.D). For each process, we carry out three dif- 

erent experiments, starting from 25, 50 and 75 annotated images 

f the training set per class and considering the rest of the train- 

ng images as unlabelled, we apply the seven processes; and, addi- 

ionally, we apply the N.D. process to the whole dataset. Further- 

ore, for the processes that use test-time augmentation, we have 

elected five augmentation techniques, namely, horizontal flip, ver- 

ical flip, horizontal and vertical flip, blurring, and gamma correc- 

ion. In the model distillation processes, we have used the archi- 

ectures ResNet34, ResNet50, ResNet101 and DenseNet121. Finally, 

or the iterative processes, we have established a threshold value 

f 0.8. 
6 
The result of these experiments can be seen in Table 3 and 

ig. 4 . From these experiments, we can draw several conclusions. 

irst of all, we can see that the improvements achieved using 

ur method range from 3% in the worst case up to 10% in the 

est case. Wilcoxon signed-rank tests found those as significant 

mprovements ( p < 0 . 05 ) with large effect sizes ( r > 0 . 5 ) in all

omparisons, except in three of them. We can also notice that 

he iterative versions of our processes produce better results than 

heir non-iterative counterparts in all the cases but one. In ad- 

ition, if we compare our semi-supervised processes using 25 

nd 50 images with respect to the N.D. process using 50 im- 

ges and 75 images respectively, a 60% of the times our pro- 

esses obtain better results than the N.D. method. This percent- 

ge increases to 70% when we consider only the iterative ver- 

ions; therefore, even if they are a bit slower, it is preferable to 

pply one of the iterative process. All these improvements are 

chieved thanks to the use of additional images that are auto- 
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Table 3 

Comparison of the performance of the seven different processes (N.D.: No distillation, D.D.: Data distillation, I.D.D.: Iterative Data distillation, M.D.: Model distillation, 

I.M.D.: Iterative Model distillation, M.D.D.: Model + Data distillation, I.M.D.D.: Iterative Model + Data distillation) in 10 datasets with 25, 50 and 75 annotated images 

per class. The “Full” column indicates the accuracy of the N.D. method applied to the whole dataset. The best results are highlighted in bold face. Wilcoxon signed-rank 

tests for comparing the results obtained by the N.D process with respect to the other six processes in each block of 25, 50 and 75 annotated images per class are also 

included. 

25 per class 50 per class 75 per class 

Full 
N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D. N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D. N.D. D.D. I.D.D. M.D. I.M.D. M.D.D. I.M.D.D. 

Blindness 0.66 0.71 0.73 0.70 0.72 0.70 0.73 0.71 0.76 0.78 0.72 0.71 0.74 0.76 0.72 0.76 0.76 0.75 0.76 0.75 0.76 0.83 

Chest X Ray 0.73 0.73 0.78 0.74 0.74 0.76 0.83 0.85 0.91 0.90 0.88 0.92 0.89 0.88 0.87 0.88 0.83 0.90 0.91 0.90 0.90 0.93 

Fungi 0.74 0.69 0.73 0.74 0.74 0.74 0.75 0.80 0.82 0.79 0.82 0.83 0.84 0.83 0.90 0.87 0.89 0.91 0.91 0.91 0.92 0.96 

HAM10 0 0 0 0.55 0.61 0.65 0.60 0.63 0.63 0.63 0.63 0.67 0.72 0.64 0.66 0.65 0.66 0.64 0.69 0.74 0.69 0.72 0.69 0.74 0.88 

ISIC 0.74 0.77 0.78 0.78 0.83 0.80 0.83 0.81 0.81 0.84 0.82 0.83 0.82 0.85 0.84 0.83 0.85 0.85 0.87 0.84 0.87 0.87 

Kvasir 0.79 0.85 0.88 0.88 0.89 0.88 0.89 0.84 0.86 0.88 0.88 0.90 0.88 0.90 0.87 0.90 0.91 0.90 0.91 0.90 0.91 0.93 

Open 

Sprayer 

0.84 0.90 0.91 0.83 0.84 0.85 0.93 0.87 0.86 0.90 0.90 0.91 0.91 0.92 0.90 0.92 0.94 0.94 0.94 0.94 0.94 0.97 

Plants 0.83 0.86 0.89 0.88 0.91 0.88 0.91 0.89 0.91 0.93 0.93 0.93 0.92 0.93 0.91 0.92 0.93 0.94 0.95 0.93 0.95 0.96 

Retinal OCT 0.90 0.90 0.86 0.93 0.96 0.93 0.94 0.93 0.95 0.95 0.96 0.98 0.97 0.97 0.94 0.97 0.93 0.98 0.99 0.98 0.98 0.99 

Tobacco 0.66 0.69 0.70 0.74 0.76 0.72 0.74 0.72 0.75 0.77 0.77 0.80 0.79 0.76 0.78 0.81 0.84 0.81 0.81 0.81 0.79 0.86 

Mean 0.74 0.77 0.79 0.78 0.80 0.79 0.82 0.81 0.83 0.85 0.83 0.85 0.84 0.85 0.84 0.86 0.86 0.87 0.88 0.87 0.88 0.92 

S.D. 0.10 0.10 0.09 0.10 0.10 0.10 0.10 0.09 0.09 0.08 0.10 0.10 0.10 0.10 0.10 0.08 0.07 0.09 0.09 0.9 0.08 0.05 

z 

(Wilcoxon) 

-1.91 -2.40 -2.49 -2.53 -2.67 -2.81 -2.57 -2.71 -2.82 -2.67 -2.84 -2.83 -1.96 -1.75 -2.84 -2.84 -2.69 -2.84 

p 0.056 0.016 0.013 0.011 0.008 0.006 0.010 0.007 0.005 0.008 0.004 0.005 0.051 0.080 0.004 0.004 0.007 0.004 

r -0.43 -0.54 -0.56 -0.57 -0.60 -0.63 -0.57 -0.61 -0.63 -0.60 -0.64 -0.63 -0.44 -0.39 -0.64 -0.64 -0.60 -0.64 

Fig. 4. Comparison of the performance of the seven different processes (N.D.: No distillation, D.D.: Data distillation, I.D.D.: Iterative Data distillation, M.D.: Model distillation, 

I.M.D.: Iterative Model distillation, M.D.D.: Model + Data distillation, I.M.D.D.: Iterative Model + Data distillation) in 10 datasets with 25, 50 and 75 annotated images per 

class. 
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atically annotated by our method; this helps the models to 

eneralise. 

Finally, we can observe that as we increase the number of im- 

ges initially annotated, the results considerably improve. More- 

ver, in some cases, it is possible to get results close to those ob- 

ained using the N.D. process applied to the whole dataset by using 

ust a small part of the dataset (see the Plant, Retinal OCT and ISIC

atasets in Table 3 ). 

. Conclusions and further work 

The work presented in this paper allows the use of deep 

earning techniques to solve an image classification problem with 

ew resources. In particular, we have presented a general AutoML 

ethod that combines transfer and semi-supervised learning tech- 

iques. This method allows users to train deep models with small, 

nd partially annotated datasets of images. In addition, we have 

roven that our AutoML method outperforms other AutoML tools 

oth in terms of accuracy and speed when working with small 

atasets. Furthermore, our semi-supervised learning method im- 

roves the accuracy of models up to a 10% when working with 

artially annotated datasets. Finally, we have developed an open- 

ource tool, that allows users to annotate a dataset, and use it 

or training a model with our method in an easy way. Altogether, 

ur approach that combines transfer learning and semi-supervised 

earning simplify the construction of fairly good image classifica- 
7 
ion models in the biomedical context when working with small, 

r partially annotated datasets. 

We have noticed that the results obtained with the data distil- 

ation techniques are dependent on the transformations applied to 

he images; therefore, for further work, we want to select those 

ransformations automatically depending on the problem we are 

orking with. Moreover, in this project, semi-supervised learn- 

ng techniques and transfer learning techniques have been applied 

o solve image classification problems; in the future, we want to 

ransfer these techniques and these processes to other computer 

ision problems like semantic segmentation. Finally, the processes 

e have developed use tools in the cloud to train models with all 

he security issues that this entails; then, we want to improve the 

ecurity of our deep learning models using encrypted techniques. 
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Table 4 

Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, and our AutoML method for automatically constructing models for 11 image 

classification problems using the precision metric. The best results are highlighted in bold face. Wilcoxon signed-rank tests for comparing the results 

obtained by our tool with respect to AutoKeras, Devol, Ludwig, and WndCharm AutoML tools are also included. 

Binu. CEle. Cho Hela Liver Liver Liver Lymp. Pollen RNAI Term. Mean z p r 

aging (AL) (CR) (S.D.) Wilcoxon 

AutoKeras 0.57 0.66 0.90 0.80 0.91 0.94 1.00 0.71 0.94 0.52 0.37 0.76 (0.21) -2.80 0.005 -0.60 

Devol 0.71 0.10 0.56 0.25 0.08 0.73 1.00 0.38 0.46 0.02 0.09 0.4 (0.32) -2.80 0.005 -0.6 

Ludwig 0.27 0.48 0.64 0.49 0.08 0.67 0.92 0.41 0.59 0 0.55 0.46 (0.27) -2.93 0.003 -0.63 

wndcharm 1.00 0.61 0.94 0.86 0.93 1.00 0.97 0.79 0.96 0.61 0.46 0.83 (0.19) -2.67 0.008 -0.57 

Ours 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.94 0.98 0.73 0.72 0.94 (0.11) 

Table 5 

Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, and our AutoML method for automatically constructing models for 11 image 

classification problems using the recall metric. The best results are highlighted in bold face. Wilcoxon signed-rank tests for comparing the results obtained 

by our tool with respect to AutoKeras, Devol, Ludwig, and WndCharm AutoML tools are also included. 

Binu. CEle. Cho Hela Liver Liver Liver Lymp. Pollen RNAI Term. Mean z p r 

aging (AL) (CR) (S.D.) Wilcoxon 

AutoKeras 0.80 0.60 0.90 0.79 0.92 0.43 1.00 0.70 0.93 0.51 0.40 0.73 (0.21) -2.81 0.005 -0.60 

Devol 0.83 0.25 0.56 0.39 0.25 1.00 0.37 0.52 0.57 0.10 0.21 0.46 (0.27) -2.80 0.005 -0.6 

Ludwig 0.50 0.42 0.65 0.50 0.25 0.64 0.90 0.42 0.59 0 0.48 0.49 (0.23) -2.94 0.003 -0.63 

wndcharm 1.00 0.56 0.92 0.86 0.92 1.00 0.97 0.80 0.96 0.64 0.49 0.83 (0.18) -2.67 0.008 -0.57 

Ours 1.00 1.00 0.97 0.99 0.99 1.00 1.00 0.95 0.97 0.74 0.70 0.94 (0.11) 

Table 6 

Comparison of the performance of AutoKeras, Devol, Ludwig, WndCharm, and our AutoML method for automatically constructing models for 11 image 

classification problems using the F1-score metric. The best results are highlighted in bold face. Wilcoxon signed-rank tests for comparing the results 

obtained by our tool with respect to AutoKeras, Devol, Ludwig, and WndCharm AutoML tools are also included. 

Binu. CEle. Cho Hela Liver Liver Liver Lymp. Pollen RNAI Term. Mean z p r 

aging (AL) (CR) (S.D.) Wilcoxon 

AutoKeras 0.67 0.62 0.90 0.79 0.92 0.59 1.00 0.69 0.94 0.47 0.38 0.72 (0.2) -2.81 0.005 -0.60 

Devol 0.77 0.15 0.51 0.28 0.12 0.84 0.54 0.44 0.49 0.03 0.12 0.39 (0.27) -2.94 0.003 -0.63 

Ludwig 0.27 0.42 0.62 0.49 0.12 0.64 0.90 0.41 0.58 0 0.54 0.45 (0.25) -2.93 0.003 -0.63 

wndcharm 1.00 0.58 0.93 0.85 0.92 1.00 0.97 0.79 0.96 0.61 0.46 0.82 (0.19) -2.67 0.008 -0.57 

Ours 1.00 1.00 0.97 0.99 0.99 1.00 1.00 0.95 0.97 0.72 0.71 0.94 (0.11) 
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