
IMPLICIT B-SPLINE FITTING USING THE 3L ALGORITHM

Mohammad Rouhani and Angel D. Sappa

Computer Vision Center
Edifici O, Campus UAB

08193 Bellaterra, Barcelona, Spain
{rouhani, asappa}@cvc.uab.es

ABSTRACT

This paper proposes a novel extension of the 3L algorithm to the B-
Splines solution space. The 3L algorithm is a fast algebraic method
for fitting a set of points through implicit curves or surfaces. It was
originally proposed for Implicit Polynomials, which although simple
and attractive are not flexible representations. In this paper Implicit
B-Splines (IBSs) are used to define the solution space of the 3L al-
gorithm. IBSs offer flexible representations, which can be locally
controlled. These properties are exploited for regularizing the so-
lution space. The experimental results illustrate that the proposed
framework outperforms previous formulation.

Index Terms— Curve and surface fitting; Algebraic methods;
Implicit B-Splines; Regularization.

1. INTRODUCTION

Surface reconstruction from cloud of 3D points is one of the ma-
jor problems in 3D computer vision. It has been active for decades
[1, 2, 3]; implicit representations are attractive and widely used in the
literature. These models do not need any parametrization, and they
are able to describe objects with complex topologies. Implicit Poly-
nomial (IP) provides one of the simplest solution space to describe
curves and surfaces; it is simply defined by a coefficient vector. The
optimal set of coefficients can be found through either algebraic or
geometric methods. The first category includes techniques based
on least squares optimization trying to satisfy a set of constraints
[4, 5, 6]. These methods are fast and easy to implement, but they
miss accuracy in fitting, due to the lack of real distance meaning
during the optimization process. The second category tackles the ac-
curacy problem by considering the orthogonal distance from point
to surface [1, 7]. These methods find the optimal coefficients by
non-linear models like Quasi Newton or Levenberg-Marquadt algo-
rithms.

The 3L algorithm belongs to algebraic methods for Implicit
Polynomial fitting [4]. It works as follows: firstly, two additional
offsets from inside and outside of the boundary must be constructed.
Then, the problem is modelled so that the optimal IP approaches
zero in the original set and obtains sign transition from inside to out-
side. Some additional constraints like spatial control points could be
imposed on in order to increase the fitting precision.

Implicit Polynomials are linearly defined from the coefficient
vector, and each coefficient has a global affection on the shape.
Hence, changes in one parameter may lead to a change in the whole
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shape. This problem is tackled in [5] in order to regularize the op-
timal IP coefficients from the 3L algorithm. Another solution is to
use a different representation model than IP [8, 9].

Implicit B-Spline (IBS) is an implicit representation that is still
linearly described with respect to the control parameters. Moreover,
each parameter has a local contribution to the shape. This property
makes it useful for algebraic fitting methods, although it can be also
used in the geometric framework [2, 10]. In addition, some regu-
larization constraints can be easily imposed in order to control the
global shape of the object.

The authors in [9] propose to use IBSs to fit the given data points
with the associated normals. Their method is similar to the gradient-
one algorithm [11], which tries to maintain the normal directions
while fitting the given data points. Moreover, a global tension term is
used in order to regularize the optimal IBS parameters. The implicit
fitting result can be modified by a parametric fitting through a dual
evolution approach [12].

In the current work the 3L algorithm is extended for implicit
B-Spline curves and surfaces. In the next section the 3L algorithm
is firstly introduced for IP space; then the proposed extension for
IBSs is presented. Additionally, some techniques are proposed in
order to regularize the control lattice. The experimental results in
section 3 show the advantages of IBSs over IPs, both in flexibility
and regularization. Finally, conclusions are presented in section 4.

2. PROPOSED APPROACH

This section presents the proposed extension of the 3L algorithm to
tackle the IBS parameter estimation problem. Firstly, the 3L algo-
rithm, for implicit polynomial case, is explained. Then, in order to
compensate the lack of flexibility of this representation, IBS is intro-
duced as another solution space. Next, the 3L algorithm is adapted
for this new space. Finally, the regularization of IBS parameters is
presented in order to control the whole shape variation. This stage in-
cludes the parameter refinement after the optimization, and imposes
additional constraints during the optimization.

2.1. THE 3L FORMULATION

The fitting problems try to find a set of parameters describing the
given set of points Γ0 = {(xk, yk)}Nd

1 . These parameters could
chosen as the coefficients of implicit polynomials defined as:

f(x, y) =
∑

i+j<=n

ci,jx
iyj , (1)

which is made by basis functions {1, x, y, x.y, ..., x.yn−1, yn}.
Each basis function has a support over ℜ, so each coefficient has
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a contribution on the whole region. The coefficients ci,j must be
found such that the values of f in the given data set get close to zero.
Then, the zero set of f defined by Zf = {(x, y) ∈ ℜ2|f(x, y) = 0}
describes the data set in a compact way.

In order to compensate the lack of geometric meaning, and to
solve the instability problem in the classical algebraic methods [1],
the authors in [4] have proposed the 3L algorithm, which consists in
generating two additional level sets: Γ−δ and Γ+δ from the origi-
nal data set Γ0. These two additional data sets are generated so that
one is internal and the other is external. These sets are placed at a
distance ±δ from the original data along a direction that is locally
perpendicular to the given data set. Having considered these con-
straints, the 3L algorithm results in a more stable solution.

In more details, the 3L fitting algorithm is formalized as a lin-
ear least squares explicit polynomial fitting problem. Considering
the three level sets: {Γ−δ,Γ0,Γ+δ} the over-determined system
M3La = b must be solved, for the block matrix M3L and the col-
umn vector b:

M3L =

 MΓ−δ

MΓ0

MΓ+δ

 , b =

 −c
0
+c

 , (2)

where MΓ0 , MΓ+δ , MΓ−δ are matrices of monomials calculated in
the original, inner and outer set respectively; ±c are the correspond-
ing expected values in the inner and outer level sets. Then, the least
squares solution for a is obtained:

a = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (3)

where M†
3L denotes the pseudoinverse of M3L.

2.2. IMPLICIT B-SPLINES

An implicit B-Spline is defined as a zero set of tensor product of
B-Splines:

f(x, y) =
M∑
i=1

N∑
j=1

pi,jBi,j(u, v), (4)

where pi,j is the lattice of control coefficients, and Bi,j(u, v) =
bi(u).bj(v) is the tensor product of two spline basis functions with
different parameters. The matrix {pi,j}M×N contains the parame-
ters of IBS. On the contrary to IPs, each basis function in IBSs has
a compact support (i.e, it obtains non-zero values in an interval and
vanishes outside it). Figure 1 shows the cubic tensor product B-
Spline defined on the unit square [0, 1]2. As illustrated in the figure,
each function is composed of different cubic patches defining the
curve in C2. The basis functions used for cubic IBS, which guaran-
tee the C2 continuity, are as follows:

b0(u) = (1− u)3/6, b1(u) = (3u3 − 6u2 + 4)/6, (5)
b2(u) = (−3u3 + 3u2 + 3u+ 1)/6, b3(u) = u3/6.

For every given point (x, y) ∈ [0,X] × [0, Y ] its corresponding
spline parameters (u, v) ∈ [0, 1]2 are defined as:

u =
x

X
M − ⌊ x

X
M⌋, (6)

v =
y

Y
N − ⌊ y

Y
N⌋.

Since an IBS is linearly described by control values (4) the least
squares method could be used to find the best set of parameters. The
only difference with IPs is the way to construct the monomial matrix
M in the original data set, the inner and outer offsets. This matrix

Fig. 1. A cubic IBS basis function defined on the unit square.

contains monomial vectors in each row showing the coefficients re-
lated to each parameter in the given point.

In order to handle the 3L algorithm, the control lattice {pi,j}
must be converted to the vector form p. The vector index corre-
sponding to pi,j is k = N.(i − 1) + j. This relationship between
two indexing must be kept everywhere: once in the monomial matrix
computation, and once to convert the final result. The optimal vector
can be found through least squares:

p = M†
3Lb = (MT

3LM3L)
−1MT

3Lb, (7)

where the monomial matrix M3L contains the coefficients of each
control parameter for each point. This matrix is constructed as fol-
lows: each rows of the matrix M3L corresponds to a point (x, y),
either from the original data set, or from one of the offsets. This
point has a contribution on a local 4 × 4 net starting from indices:
i = ⌊ x

X
.M⌋ and j = ⌊ y

Y
.N⌋. Traversing all the active parameters

{pi+m,j+n}m,n∈{0,1,2,3}, the value bm(u).bn(v) must be saved in
the column k = N.(i+k−1)+(j+ l) and the current row of M3L.

2.3. REGULARIZATION

The matrix in (7) might be singular, which leads to more than one
solution as an optimal IBS. In fact, during the least squares optimiza-
tion some of the control parameters do not have any contribution. So,
they are not taken into account during the minimization, and it leads
to a subspace of solutions.

Using a global tension term is a common method of parameter
regularization [9]. This term is computed by measuring the curvature
of f over the whole domain:

T (p) =

∫ ∫
D

f2
xx + 2f2

xy + f2
yydx.dy. (8)

This term is the same one used as a bending energy in Thin Plate
Spline (TPS) for deformations. It must be emphasized that this term
can be analytically computed for the given control parameter. This is
due to the linear definition of IBSs, and the linearity of the integral
operation. Since it is a quadratic term, its derivative will be still
linear, and the final solution could be solved through a linear system
of equations [9].

In the current work, we use Ridge Regression (RR) which is a
widely used method for regularizing ill-posed problems [5]. In this
technique the monomial matrix will be added to a diagonal matrix in
order to obtain a nonsingular one:

p = (MT
3LM3L + λ.diag)−1MT

3Lb. (9)
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Fig. 2. The 3L algorithm for 2D fitting though an IBS (left) before,
and (right) after editing the control parameters.

AFE = 1.97 AFE = 0.56

AFE = 4.80 AFE = 0.83

Fig. 3. Fitting 2D set of points with: (left) 6th degree IPs; (right)
proposed IBSs.

The diagonal matrix, diag, could be either an identity matrix or the
diagonal matrix of MT

3LM3L or a combination of both of them.
In addition, a coarse to fine regularizing technique could be ap-

plied. For this purpose, we start from a low resolution control lat-
tice. Having computed the solution, these control values could be
imposed as new constraints on the higher resolution control lattice.
Moreover, after having the final solution, it could be easily pruned
through substituting the values of inactive control parameters by
some constant values. These constant values must be a large pos-
itive or a small negative to show the inside and outside respectively.

3. EXPERIMENTAL RESULTS

The proposed approach has been validated for data sets in 2D and
3D. The 3L algorithm has been used in all examples, once for im-
plicit polynomials (IPs), and once for implicit B-Splines (IBSs). The
accuracy in both cases is quantitatively evaluated using the fitting er-
ror (FE) computed for every single point with [7]. These values
are used to obtain a quantitative criterion for comparison, which is

Fig. 4. The result of 3L algorithm for a set of 3D points through:
(top) a 9th degree IP (AFE=4.20) and (bottom) an IBS obtained
with the proposed approach (AFE=3.08).

referred to as Accumulated Fitting Error (AFE): AFE=
∑Nd

i=1 FEi.
The advantage of IBSs as a solution space for 3L is illustrated in
these examples. Figure 2(left) shows the output of the 3L algo-
rithm applied in IBS space. As illustrated in this figure, the control
parameters around the domain border need to be regularized. For
this purpose we only changed the control parameters away from the
object. These parameters do not have any contribution for the points
around the given data set. Figure 2(right) depicts the improvement
after editing the inactive control parameters. Figure 3 compares the
result of 3L-IP and 3L-IBS for two sets of 2D points. As illustrated
in this figure, IBS solution space can be easily controlled, and reach
a better fitting result without outliers.

In the current work, the 3L-IBS is mainly proposed for the 3D
point fitting, when the final implicit surface is self-occluded. Figure
4 (top) depicts the result of the 3L algorithm for an nineth degree
IP. Since the 3L algorithm just imposes some constraints around the
given data, there is no control away from the object. Moreover, since
the coefficient vector of IP has a global affection on the shape, it is
not easy to edit these parameters after the fitting stage. This problem
is solved through using a 12 × 12 × 12 IBS (Fig. 4 (bottom)).
The inactive control parameters, which are away from the object,
are set to a constant value in order to avoid any sign transition in the
implicit function. Similarly, Fig. 5 compares the result of 3L-IP for
a tenth degree IP and 3L-IBS for a 14 × 14 × 14 IBS. The same
order IBS is used in Fig. 6 (bottom) while an eighth degree IP is
used for the 3L-IP in Fig. 6 (top). It must be mentioned that using
a higher degree results in a more unstable IP. The only way to edit
the coefficient vector is to change the 3L model, and to add some
regularization term inside the model like RR in [5], which decreases
the fitting precision [6]. The advantage of IBS to IP is due to the
facilities provided for parameter regularization during the fitting, and
parameter editing even after the fitting.
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Fig. 5. The result of 3L algorithm for a set of 3D points through:
(top) a 10th degree IP (AFE=2.83) and (bottom) an IBS obtained
with the proposed approach (AFE=2.04)

4. CONCLUSIONS

In this work, IBSs are used to define the solution space of the 3L
algorithm instead of IPs, which were originally used. An IBS is
a linear combination of the control parameters; moreover, each pa-
rameter has a local contribution on the shape, which makes it more
desirable than IPs. The experimental results show the advantages of
IBSs, and the facility for parameter editing. Future work will be fo-
cused on the application of this flexible representation for tackling
the registration problem.
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