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Statistical Modeling of 4D Respiratory Lung Motion
Using Diffeomorphic Image Registration

Jan Ehrhardt*, René Werner, Alexander Schmidt-Richberg, and Heinz Handels

Abstract—Modeling of respiratory motion has become increas-
ingly important in various applications of medical imaging (e.g.,
radiation therapy of lung cancer). Current modeling approaches
are usually confined to intra-patient registration of 3D image
data representing the individual patient’s anatomy at different
breathing phases. We propose an approach to generate a mean
motion model of the lung based on thoracic 4D computed to-
mography (CT) data of different patients to extend the motion
modeling capabilities. Our modeling process consists of three
steps: an intra-subject registration to generate subject-specific
motion models, the generation of an average shape and intensity
atlas of the lung as anatomical reference frame, and the registra-
tion of the subject-specific motion models to the atlas in order to
build a statistical 4D mean motion model (4D-MMM). Further-
more, we present methods to adapt the 4D mean motion model to a
patient-specific lung geometry. In all steps, a symmetric diffeomor-
phic nonlinear intensity-based registration method was employed.
The Log-Euclidean framework was used to compute statistics
on the diffeomorphic transformations. The presented methods
are then used to build a mean motion model of respiratory lung
motion using thoracic 4D CT data sets of 17 patients. We evaluate
the model by applying it for estimating respiratory motion of ten
lung cancer patients. The prediction is evaluated with respect to
landmark and tumor motion, and the quantitative analysis results
in a mean target registration error (TRE) of 3.3 &= 1.6 mm if lung
dynamics are not impaired by large lung tumors or other lung
disorders (e.g., emphysema). With regard to lung tumor motion,
we show that prediction accuracy is independent of tumor size
and tumor motion amplitude in the considered data set. However,
tumors adhering to non-lung structures degrade local lung dy-
namics significantly and the model-based prediction accuracy is
lower in these cases. The statistical respiratory motion model is
capable of providing valuable prior knowledge in many fields of
applications. We present two examples of possible applications in
radiation therapy and image guided diagnosis.

Index Terms—Diffeomorphic registration, motion modeling, res-
piratory motion, statistical atlas generation, 4D computed tomog-
raphy (CT).

I. INTRODUCTION

ITH 4D imaging techniques spatiotemporal image se-
quences can be acquired to investigate dynamic pro-
cesses in the patient’s body. For instance, respiratory correlated
spatiotemporal computed tomography scans (4D CT) open up
the possibility to research respiratory induced organ motion.
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The clinical relevance of this research is diverse. Respiratory
motion is related to the function of the lung and therefore a di-
agnostic value in itself. Furthermore, breathing induced organ
motion potentially leads to image artifacts and to position uncer-
tainty in image guided procedures. Particularly in radiotherapy
planning of thoracic and abdominal tumors, the respiratory mo-
tion causes important uncertainties and is a significant source
of error [1]. Therefore, there has been a large and continuing
growth in studies and applications of 4D CT images for mo-
tion measurement, radiotherapy treatment planning, as well as
functional investigations [2]—[5]. The role of image registration
techniques is increasing in these applications. Image registra-
tion enables the estimation of the breathing-induced motion and
the description of the temporal change in position and shape
of the structures of interest by establishing the correspondence
between images acquired at different phases of the breathing
cycle. A variety of image registration approaches have been
used for respiratory motion estimation in recent years (see [6]
for a review).

In radiotherapy estimations are used to define accurate
treatment margins, to calculate dose distributions and to de-
velop prediction models for gated or robotic radiotherapy.
However, the computed motion models are confined to the
individual breathing cycle represented in the 4D image data.
The problem of these methods is the presupposition that the
breathing motion is reproducible throughout image acquisition,
radiotherapy planning, and the delivery process of treatment. It
has been shown that breathing motion is not a robust and 100%
reproducible process [7], [8] and a widespread consensus now
exists that it would be useful to use prior knowledge of respi-
ratory organ motion and its variability to improve radiotherapy
planning and treatment delivery [9].

Some motion modeling approaches have been published
that deal with the variations of breathing motion. Low et al.
[10] describe a motion model of the lung parametrized by tidal
volume and airflow measured with spirometry. This allows to
model hysteresis and irregular breathing patterns. McClelland
et al. [11] compute an average respiratory cycle by fitting a
periodic B-spline function to the trajectory of a target point
(voxel). The effects of variation between different cycles are
reduced and a memory-efficient, time-continuous model is
generated. Coolens et al. [12] describe a new treatment margin
concept that addresses breathing motion variations. An elliptic
model is fitted to the target trajectory and the deviations from
the elliptic trajectory in position and phase are used for an
appropriate margin formulation. These approaches have in
common that the parameters of a predefined motion model are
estimated from motion information extracted from 4D images.
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In contrast, Neicu et al. [13] computes a mean tumor trajectory
and phase by averaging the breathing cycle periods and the
phase-dependent tumor positions.

The approach proposed in this paper is different from the pre-
vious methods in several ways. Our approach does not rely on
a predefined model whose parameters are fitted to match spe-
cific data. Instead, our motion model constitutes the statistical
mean of the motion extracted from 4D images. The previous
methods consider each target point independently for parameter
estimation or average calculation. In our approach, the deforma-
tion of the whole organ between different breathing phases, e.g.,
from start inhale to mid-inhale, is regarded as a nonlinear dif-
feomorphic transformation of the 3D space, and statistics are
performed on a population of such transformations. Further-
more, the methods mentioned before focus on the generation
of intra-patient models. In this paper, methods are presented to
generate a statistical inter-patient 4D motion model of the lung
from a population of 4D images of different patients.

Statistical inter-patient motion models have been constructed
before for myocardial motion. In [14] and [15], nonlinear reg-
istration methods were used for the estimation of subject-spe-
cific cardiac motion and for the spatio-temporal alignment of
MR sequences of different subjects into a common reference co-
ordinate system. The subject-specific motion fields were trans-
ferred into the reference coordinate system by the algorithm pro-
posed in [16] and a statistical myocardial motion analysis was
performed. The first steps towards an average inter-patient lung
motion model were done by Sundaram et al. [17], but their work
focuses on the temporal reparametrization of 2D + ¢ lung MR
images and the generation of average intensity images for cor-
responding breathing states.

Our modeling approach is based on the assumption that
breathing dynamics work similarly for all patients examined.
Starting from 4D CT images and associated lung segmentation
masks from different patients acquired during free breathing,
methods are presented to extract an average shape and intensity
atlas of the lung (used as anatomical reference frame) and to
generate a statistical model of the mean lung motion. In con-
trast to previous work [14], [15], the breathing motion of each
subject is represented by a sequence of diffeomorphic trans-
formations. The computed motion fields of different subjects
are then transformed into the atlas coordinate system. Thus, a
statistical inter-patient analysis of the motion fields becomes
possible, differences in respiratory motion between patients can
be quantified and analyzed, and further insights into the vari-
ability of breathing motion between individuals can be achieved.
A statistical 4D mean motion model is generated from the popu-
lation of sequences of diffeomorphisms. Such a statistical model
of the respiratory motion can provide valuable prior knowl-
edge in many fields of application, e.g., for dose calculation
in radiation therapy, to reduce motion-related artifacts during
image acquisition, or to improve the robustness and precision of
motion estimation algorithms. The reliability of our approach is
demonstrated by using the motion model for predicting respira-
tory motion of individual patients and evaluating the prediction
quality.

Essential for our work is the development of the Log-Eu-
clidean framework, recently proposed by Arsigny et al. [18].
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The Log-Euclidean framework enables the implementation of
efficient algorithms for nonlinear diffeomorphic registration
[19] and provides a simple way for computing statistics on dif-
feomorphisms via vectorial statistics on their logarithms [20]. In
contrast to other diffeomorphic registration approaches [21] and
statistical methods based on Riemannian metrics [22], the com-
putational costs are significantly reduced so that the processing
of large image data sets is enabled. Furthermore, the inverse of
the computed transformations is immediately known and thus
the spatial transformation of motion fields is simpler and tends
to be more straight forward than the algorithm proposed in [16].

The paper is structured as follows. In Section II the acquisition
of the 4D CT images, the diffeomorphic registration methods and
the computation of the average shape and motion model are de-
scribed. Furthermore, methods for utilization of the 4D-MMM
for motion prediction and evaluation methods are presented. In
Section III, the average lung motion model is applied to predict
lung and tumor motion for individual patients and compared to
intra-patient registration. The results are discussed in Section IV,
and the paper ends with some concluding remarks.

II. METHODS

The goal of our approach is to generate a statistical model of
the respiratory lung motion based on a set of IV, thoracic 4D
CT image sequences. Each 4D image sequence is assumed to
consist of NV; 3D image volumes, which are acquired at corre-
sponding states of the breathing cycle, e.g., maximum exhala-
tion, mid-inhalation, maximum inhalation, mid-exhalation, and
so on. This assumption is ensured by the applied 4D CT recon-
struction method (see Section II-A).

The 4D mean motion model is generated in three steps (see
Fig. 1).

» Step I: Estimation of the subject-specific motion for each

4D image sequence by registering the 3D image frames.

» Step II: Building an average shape and intensity atlas of the
lung for a reference breathing state.

» Step III: Registration of all subject-specific motion models
to the anatomical average shape and intensity atlas and
generation of a mean inter-subject model of respiratory
motion.

Image registration is required in all three steps. We use a non-
linear, intensity-based, diffeomorphic registration method as de-
scribed in Section II-B. Section II-C presents the framework
for computing statistics on diffeomorphisms. The three steps to
generate a statistical model of the respiratory motion are de-
tailed in Sections II-D-II-F. The utilization of the 4D-MMM
and methods to evaluate the model are presented in Section [I-G
and II-H.

A. 4D Image Acquisition and Image Reconstruction

4D CT images were acquired for the investigation of lung
tumor mobility using a 16-slice CT scanner operated in
cine-mode. During the acquisition process, the patients were in-
structed to breathe naturally. Between 16 and 19 couch positions
per patient were investigated to ensure a complete coverage of
the thorax. For each couch position, 25 scans were acquired con-
tinuously in time and synchronized spirometry measurements
were recorded to associate each CT scan (i.e., 16 2D CT slices)
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Fig. 1. Overview of the generation of the 4D-MMM: (I) First, the subject-specific motion is estimated for each 4D image sequence by registering the 3D image
frames. (II) In a second step, a 3D average shape and intensity model is generated from the reference frames of the 4D CT image sequences. (III) In the last step,
the average shape and intensity model is used as an anatomical reference frame to match all subject-specific motion models and to build an average inter-subject

model of the respiratory motion.

with tidal volume and breathing phase (inhalation or exhalation).
For further details on data acquisition see [23] and [24].

The resulting spatiotemporal series of CT scans were used
to retrospectively reconstruct 4D CT data sets. A reconstructed
4D CT image data set consists of a series of 3D CT data sets
reconstructed at different breathing phases that sample the
patient’s breathing cycle equidistantly in time. For each se-
lected breathing phase, a tidal volume is computed based on the
patient-specific spirometry records. However, free breathing
causes the problem that there are often no CT scans acquired
exactly at the tidal volume desired. Therefore, an optical flow
based reconstruction method for 4D data sets was applied [25].
Here, a temporal interpolation scheme was derived from the
optical flow equation [26] and the reconstruction method gener-
ates interpolated CT scans for exactly the predefined respiratory
state. The main advantage of this method is that the 3D images
can be reconstructed to arbitrary phases of the breathing cycle
while the motion artifacts are minimized simultaneously. For
further details and an evaluation of the reconstruction method,
we refer to [25].

The reconstructed 4D image sequence for a patient p consists
of N; 3D images I, ; : @ — R,(Q C R3), reconstructed at
predefined respiratory phases j = 0,...,N; — 1. Due to the
applied 4D image reconstruction method, for all patients the
phases j correspond to each other. Therefore, in contrast to the
work presented in [15], [17], and [27], a temporal alignment of
the patient data sets is not required.

B. Diffeomorphic Image Registration

A diffeomorphic transformation ¢ : Q@ — Q, Q C R? is
a globally one-to-one and differentiable mapping with a differ-
entiable inverse, so that the topology of the structures is main-
tained. Constraining the transformations to be diffeomorphisms
is a natural choice in medical image registration as the smooth-
ness of anatomical features is preserved and connected struc-
tures remain connected [21]. In computational anatomy, dif-
feomorphic transformations are used to allow for the study of
correspondences between structures of different subjects, and
therefore to analyze and characterize the biological variability

of human anatomy. Diffeomorphic transformations can be mod-
eled as arising from an evolution over unit time ¢ € [0, 1], corre-
sponding to the transport equations from continuum mechanics
[28]. If v : Q x [0,1] — R? is a time-dependent velocity field,
then the diffeomorphism is initialized with the identity trans-
form and evolves by

7]

& (.’B,t) = U(¢(I,t),t), ¢("570) =T

This term has a physical interpretation: if ¢(z,t) = y, then a
particle placed at = at time O ends at y at time ¢ subject to the
vector field v, which represents the time and position dependent
velocity of this particle. Throughout this paper, p(x) = ¢(z,1)
denotes the diffeomorphic transformation we search for, i.e., the
solution of the transport equation at time ¢ = 1. In medical
image registration applications, this characterization of diffeo-
morphic transformations results in time and memory consuming
algorithms, because the optimization is performed on the space
of time-dependent vector field flows [21].

In recent works [20], [29], diffeomorphisms are parameter-
ized by stationary vector fields v(z, t) = v(z), i.e., the velocity
fields remain constant over time. This approach still results in
deformations that are diffeomorphic and has the advantage over
the nonstationary setting that the resulting deformations can
be computed rapidly and memory efficiently. A disadvantage
of this approach is the missing physical interpretation of the
velocity field. During the propagation of the deformation, each
position in the stationary velocity field corresponds to different
particles at different times. Furthermore, these diffeomor-
phisms have fewer degrees of freedom than the general case
with time-dependent vector fields. In fact, only a subgroup of
diffeomorphisms can be parametrized in this way. However,
diffeomorphisms parameterized by stationary vector fields have
been shown to be versatile enough to describe the anatomical
variability in different applications [19], [29], [30].

In the perfect case (i.e., infinitely differentiable), diffeomor-
phisms ¢ : Q@ — Q form a Lie group (Diff(£2),0) with the
composition operation o, as they satisfy the requirements of clo-
sure, associativity, existence of inverse and identity. To any Lie
group a Lie algebra g can be associated, which captures the local
structure of Diff(Q2). The underlying vector space of g is the
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tangent space TrqDiff (2) of Diff (2) at the neutral element Id
(identity). Lie algebra and Lie group are connected by the group
exponential map, which is obtained by exponentiating elements
of the Lie algebra to produce members of the Lie group. Inter-
estingly, for the infinite-dimensional group of diffeomorphisms,
the group exponential map of a velocity field v € TqDiff ()
corresponds to the one-parameter subgroups defined by the flow
of a stationary vector field (see [18], [31] for a derivation)

17
Egb(xvt) =v(¢(z,t)), and ¢(z,0) = =. (L

The group exponential map is then defined as
exp : T1aDiff (Q) — Diff (), exp(tv(z)) = ¢(=,t).

The diffeomorphism, given by the solution at ¢ = 1 of (1) is
given by p(z) = ¢(x,1) = exp(v(z)) and can be efficiently
computed with the scaling and squaring approach [20]. This ef-
ficient algorithm can be derived from the properties of the ex-
ponential map: exp(v) = exp((1)/(k)v)* for k € Z and is
summarized in algorithm 1. Furthermore, the inverse of @(x) is
defined by the exponential of the negative velocity ¢! (z) =
exp(—wv(z)) and can be computed in the same way.

Algorithm 1 Computation of vector field exponentials
(Scaling and Squaring)

Choose N so that 2~V is close enough to 0, e.g.,
max |27 No(z)|| < (voxelsize)/(2).

Perform an initial scaling, let p(z) «— x + 2~ Nv(z).

Do N recursive squarings ¢(z) < (¢ o )(x).

It should be noted, that there are some theoretical problems
yet to be solved. For example, we do not have an actual Lie
group but only a pseudo-group for the infinite dimensional
space of diffeomorphisms. Furthermore, the group exponen-
tial mapping is not surjective, i.e., there are elements of the
group of diffeomorphisms infinitesimally close to the identity
that cannot be generated by (1). However, the parametriza-
tion with stationary velocity fields leads to a very efficient
implementation for diffeomorphic image registration (see
below), which showed a similar registration performance (ac-
curacy and smoothness) as diffeomorphisms parameterized by
non-stationary vector fields, with a significant benefit regarding
computational complexity [30].

The generation of the motion model requires the computation
of numerous diffeomorphic transformations. Therefore, an effi-
cient registration algorithm is essential in our application. Our
partial differential equation (PDE) driven diffeomorphic regis-
tration framework is based on a symmetric intensity-based reg-
istration algorithm recently proposed by Vercauteren ef al. [32].
To assure source to target symmetry, the problem of image reg-
istration between a reference image I, and the target image I is
phrased as finding a diffeomorphic transformation ¢ = exp(v)
that minimizes an energy functional!

T = %(D[Ion 0@l + D[I;, Iy o~ ']) + aS[v]

INote that the dependence of I;, I, @, v, etc., on z is assumed for the rest of
the paper and may be omitted, i.e., ¢ = exp(v) means ¢(x) = exp(v(x)).
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where D is an image distance, e.g., the sum of squared differ-
ences (SSD), and S ensures the desired smoothness of the trans-
formation [33]. The Euler-Lagrange equation associated with
the minimization of the energy functional leads to the necessary
condition

Ve e Q: (with ¢ = exp(v))
S Ftyop(®) — Ty tyep 1 (@) +0d(@) =0 @)

where the partial differential operator A is related to the
smoother S and the force term f is related to D. We choose
the diffusive smoother S[v] = [;, Y\, ||Vy||> dz with the
resulting linear operator A = A, withv = (v1,...,v4) and
A denotes the Laplace operator. Instead of using a force term
derived from the standard SSD, f is chosen to be
f __ Ho=({jo9)V(op)
I Le® IV 0 @)|12 + K210 — (1 0 9))?

with 2 being the reciprocal of the mean squared spacing. This
force term is widely used in medical image registration [6],
[34], [35] and has the advantage of generating relatively stronger
forces at weak edges compared to the standard SSD. In our ex-
perience, this leads to better registration results in low contrast
areas of the lung. However, at least to our knowledge there is
no associated distance D known and the resulting registration
method can be classified as iconic feature based registration ac-
cording to [35].

The resulting PDE can be used to find local minima of the
associated energy functional in an iterative manner. We em-
ploy the following semi-implicit iterative scheme that can be
efficiently implemented using additive operator splitting (AOS)
[36] to solve (2)

ot = (Id — raA)™! (vk + g (f];(,,ljotp - f];j,looﬂo’l))

where Id is the identity and 7 the step length. A multiresolution
scheme is used to improve registration speed and robustness.
The resulting registration method is summarized in algorithm 2.

(€)

Algorithm 2 Symmetric diffeomorphic registration

Setv! =0,p=¢p ' =Idand k =0
repeat

Compute the forward update field
uforw = fIO7I_7' o using (3)

Compute the backward update field
bk = f o using (3)

Calculate the next estimate of the velocity field:
,vk+1 — (Id _ TaA)—l(,vk + (7_/2>(uforw _ uback))

Calculate the current transformation ¢ = exp(v**1)
and the inverse p~1 = exp(—v*T!)

Letk — k+1

until [[v*11 —v*|| < cork > Kuax

The reason for choosing the diffeomorphic registration
approach proposed is threefold. In the context of the motion
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model generation, it is important to ensure that the calculated
transformations are symmetric and diffeomorphic because
of the multiple usage of inverse transformations. The second
reason is related to runtime and memory requirements: Due
to the size of the 4D CT images diffeomorphic registration
algorithms using non-stationary vector fields, e.g., [21], are not
feasible. Third, the representation of diffeomorphic transfor-
mations by stationary vector fields provides a simple way for
computing statistics on diffeomorphisms via vectorial statistics
on the velocity fields.

C. Computing Statistics on Diffeomorphisms

In step I and step III of the model generation the computation
of statistics (the mean) of (diffeomorphic) transformations is
needed. Statistics of nonlinear transformations were computed
before e.g., by computing the mean deformation in atlas gen-
eration methods [37], [38] or for the construction of statistical
deformation models [39]. Many registration approaches use a
small deformation model, in which the spatial transformation
@ : Q —  is parametrized by a displacement field u, which is
added to the identity transform: ¢(z) = £ +u(zx). Although this
additive model is applied successfully in many applications and
very efficient algorithms were developed [20], this parametriza-
tion has several disadvantages. For example, the calculation of
the inverse of a given transformation is expensive and the invert-
ibility cannot be guaranteed. Furthermore, assuming a vector
space with the usual additive structure leads to inconsistencies,
since e.g., the inverse of = + u(z) cannot be approximated by
x — u(x) for larger deformations (see [29] for a detailed dis-
cussion). As a consequence, this prevents the use of vectorial
statistics on displacement fields, because for example the mean
of a sample of invertible transformations is not necessarily in-
vertible.

In recent years, some work has been done to define the
methodology for a statistical computation framework on the
manifold of diffeomorphic transformations [31], [40]. The
notion of first- and second-order statistics can be extended to
general metric spaces. For a general metric space M with a dis-
tance d : M x M — R, e.g., the Fréchet mean of data points z;
can be defined as the minimizer of the sum of squared distances
f = argmingea Y, d%(p, ;). Therefore, one approach is to
provide the diffeomorphism group with a Riemannian metric
and to define geodesic distances between diffeomorphisms
[41]. Based on this distance, statistical measures like the mean
can now be computed by optimization methods [38]. However,
the computation of the distances and the necessary optimization
results in long computational times and prevent the use of this
approach in many applications.

In our application, an alternative framework to perform sta-
tistics on diffeomorphisms is used. The Log-Euclidean frame-
work was introduced to compute statistics on finite-dimensional
Lie groups, e.g., affine transformations or tensors. Recently, an
extension of this idea to diffeomorphisms arising from (1) was
presented by Arsigny et al. [20]. These diffeomorphisms belong
to one-parameter subgroups and are parameterized by a static
velocity vector field v. Following [20], this parametrization is
called principial logarithm v = log(y) and is a simple 3D
vector field. On diffeomorphisms whose principial logarithm

is well defined, one can define a distance between diffeomor-
phisms dist(yy, ;) = ||log(ip;) — log(e,)]|, where || - [| is a
norm on vector fields. This distance is a generalization of the
distance defined before on the Lie group of symmetric posi-
tive-definite matrices [42]. The Log-Euclidean mean of a set of
transformations ¢; is identical to the Fréchet mean related to
this distance and can be computed efficiently by

_ 1 o
p = exp N Z log(p;) | - “)
i=1

The computation of the logarithm is not necessary in step II of
the model generation, because v = log(y) is computed during
the registration. In step III (Section II-F), diffeomorphic trans-
formations are not computed directly by algorithm 2. Here, an
iterative method for the estimation of the logarithm of diffeo-
morphisms is used [20], [43].

We chose this statistical approach in our application due to
practical reasons. In contrast to the small deformation frame-
work, the computed Log-Euclidean mean is diffeomorphic and
easy to invert. Furthermore, mean and distance are inversion-in-
variant, since log(¢) = — log(p™!). On the other hand, there
are some theoretical problems as noted in Section II-B and the
metric linked to this distance is not translation invariant, since
in general dist (¢, ) # dist(p, o, @, o). However, exper-
iments show satisfying results for the generation of anatomical
atlases [20] and statistics can be much more efficiently com-
puted than in the Riemannian distance framework.

D. Step I: Intra-Patient Motion Estimation

The estimation of intra-patient respiratory motion requires
the registration of 3D volumes of different respiratory states
of the same patient. Let [,; : @ — R (2 C R3) be the
3D volume of subject p € {1,..., N, } acquired at respiratory
state j € {0,...,N; — 1}. Without loss of generality, max-
imum inhale is chosen as reference breathing state and I, o is
the reference image of patient p. Algorithm 2 is used to com-
pute the transformations ¢, ; : 2 — () registering the reference
image I, o and target images I, ;, forall j € {1,...,N; — 1}
[see Fig. 1(I)]. Registration of 4D CT images often suffers from
motion artifacts. These are reduced by the 4D CT reconstruc-
tion method applied (see Section II-A), but some residual arti-
facts remain. To minimize further bias on the model generation
process, the regularization parameter « is chosen in such a way
that the estimated motion fields do not appear to be influenced
by the artifacts.

We are only interested in displacements of voxels inside the
lung. Therefore, the lung needs to be segmented and segmen-
tation masks S, : © — [0,1] are used to restrict the regis-
tration to the lung region by computing the update field only
inside the lung w(x) = Sp(z) - f..(z). Beside speeding up
the registration process, this approach allows us to refrain from
explicitly handling the discontinuities in the respiratory motion
between pleura and rib cage because moving and stationary re-
gions of the body compete during the registration process owing
to the smoothness constraint of the registration algorithm. Fig. 2
shows examples of estimated displacement fields between max-
imum inhale and maximum exhale.
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Fig. 2. Examples of computed intra-subject displacement fields. The magnitude of the estimated lung motion between end expiration and end inspiration is visu-
alized color coded (in millimeters). The lung geometry and motion amplitude differ between patients, motion patterns appear to be similar.

(a)

®)

Fig. 3. Visualization of the average lung model in the state of maximum inhalation (a) and the magnitude of the mean deformation between maximum inhalation
and maximum exhalation (b). In (a), the accurate registration of the lung boundary and a reasonable registration of structures inside the lung can be observed,
while structures outside the lung are not matched well. The mean deformation model shows a typical respiratory motion pattern. Different windowing and leveling

functions are used to accentuate inner/outer lung structures.

Fig. 4. Visualization of the displacement field of patient 01 estimated with nonlinear intra-patient registration (a) and the predicted displacement field using the
average motion model (b). The magnitude of the displacement fields inside the lung is visualized color-coded.

Our automatic lung segmentation method follows largely [44]
and consists of three steps: 1) automatic lung segmentation using
thresholding and morphological operations, 2) identification and
removal of the central airways, and 3) separation of the right and
left lungs if needed. In contrast to the 2D morphological oper-
ation proposed in [44], Dijkstra’s algorithm is used in step 3 to
find an optimal separation path in CT slices where gray-scale
thresholding fails to separate the left and right lungs.

E. Step II: Building the Average Shape and Intensity Atlas

The computed intra-subject models of the lung motion are
used to generate an inter-subject model of respiratory motion
that reflects the mean motion of all subjects. To build a statis-
tical model of respiratory motion, correspondence between dif-
ferent subjects has to be established, i.e., an anatomical refer-
ence frame is necessary. The computed transformations ,, ; are
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defined in the reference image I, ¢ of patient p. Therefore, the
reference images I, o forp = 1,..., N, are used to generate an
average intensity and shape atlas /o of the lung in the reference
breathing state. This 3D lung atlas is used as reference frame for
the statistical lung motion model.

In recent years, intensive research has been directed toward
the development of digital 3D atlases of the human anatomy
using image matching techniques. In this context, inverse con-
sistent diffeomorphic image registration has been proved to be
favorable to generate average anatomical atlases [45]. In our
application, we use the symmetric diffeomorphic registration
method introduced in Section II-B in combination with a sta-
tistical atlas building method proposed by Guimond et al. [37]
to generate a 3D atlas of the lung. Our atlas generation method
is summarized in algorithm 3.

Algorithm 3 Generation of an average shape and
intensity atlas

Given: a set of 3D images I, o (p = 1,...,N,)

Choose an initial reference image, e.g., I3 = I o, set
k=0

repeat
for all subjects p do

Compute the transformation 9, to register [, o and
Ik using an affine preregistration and algorithm 2.

end for

Compute the inverse average transformation

-1 1
P =exp | —5m D log(w,)
Py
Generate the new average intensity and shape image
= 1 -1
k
IEY(g) = A Xp:Ipp (1/;p o1 (z))

k—k+1

until |[I7T — I}|| < eor k > Kupax

Fig. 3(a) shows the average lung image I, generated with al-
gorithm [3]. In contrast to the method proposed by Guimond
et al., the averaging of the transformation is performed in the
Log-Euclidean space to ensure diffeomorphic transformations.
Note that the velocity fields w), = log(#,,) are computed during
the symmetric diffeomorphic registration and therefore no ex-
plicit calculation of the logarithm is necessary. The inverse av-
erage transformation 17;71 is easily computed from the negative
mean velocity by algorithm 1. In the implementation, transfor-
mation 9, is composed of a global affine transformation and a
local nonlinear freeform deformation.

e
Q, Q4
/// _1 \\\
. W .
/ \_1
¥p,j Yp © Ppj 0P,

Fig. 5. The spatial transformation 9, o ¢, ; 0 1/);1 between atlas- and pa-
tient coordinate system €2 4 and §2,, eliminates subject-specific size and orien-
tation information in the motion fields ¢, ;. Such a coordinate transformation
accounts for the differences in the coordinate systems of subject and atlas due
to misalignment and size/shape variation and enables the quantitative and qual-
itative comparison of motion fields of different subjects.

F. Step III: Generation of the 4D Mean Motion Model

The intra-subject motion fields, calculated in the first step of
the model generation process, are diffeomorphic mappings de-
fined in the anatomical coordinate system of subject p : ¢, ; :
2, — ,,. The registered images I, ;,j = 0,..., N; — 1 show
the anatomy for subject p at different time points and the derived
motion is expressed relative to the chosen reference image I, .
To compare the transformed fields of a number of different sub-
jects, the intra-subject motion fields are mapped into the atlas
coordinate system €2 4. Let 1/1p : {1, — Q4 be the transforma-
tion between the reference image I, ¢ of subject p and the atlas
image Iy). Consider a point z € €24 with the corresponding point
T =1, '(z) € Qp, then the pointy’ = @, j(x') transformed
by the motion field in €2, corresponds to y = 9,(y') € Q4.
Thus, the transformation of the patient-specific motion field ¢, ;
into the atlas coordinate system is given by

@y =00, 0%, ®)

In Fig. 5 a schematic sketch is shown to clarify this transfor-
mation. The coordinate transformation accounts for the differ-
ences in the coordinate systems of subject and atlas due to mis-
alignment and size/shape variation and eliminates subject-spe-
cific size, shape and orientation information in the deformation
vectors. In contrast to the method proposed in [16], the inverse
transformation %, ! is available and no numerical approxima-
tion is needed.

In this manner, for each breathing state j the intra-patient mo-
tionmodels ¢, ;,p = 1,..., N, are mapped to the common co-
ordinate space of /o. The mean motion model ¢; is generated
by calculating the Log-Euclidean mean of the mapped transfor-
mations

_ 1 -
p; = €exp N Z 108'(‘Pp,j)
Pop

= exp

1 _
A zp:log (Y00, 09,") | . (6)
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Fig. 6. Utilization of the 4D-MMM for motion prediction: the average lung
atlas is registered with the 3D patient image and the resulting transformation is
used to apply a coordinate transformation of the mean motion fields. The patient-
specific scaling factor A accounts for the individual amplitude of respiratory
motion.

With ¢, ;. = exp(v, ;) and ¥, = exp(w,) we could ap-
proximate log(g,, ;) = log[exp(w),) o exp(v,, ;) o exp(—w,)]
using the Backer—Campbell-Hausdorff formula [18]. However,
the approximation error depends on the norm of the (non-small)
velocity fields w, and v,, ;. Therefore, we concatenate the dif-
feomorphic transformations ¢, 0, ; 0%, ! and use the method
proposed in [43] to compute the logarithm.

The resulting 4D-MMM consists of an average lung image
I for a reference state of the breathing cycle, e.g., maximum
inhalation, and a set of motion fields ¢; describing an average
motion between the respiratory state j and the reference state
[Fig. 3(b)]. Such a model can now be used to predict patient-spe-
cific breathing motion or to compare individual motion patterns
to the mean motion.

G. Utilization of the 4D-MMM for Individual Motion
Prediction

The 4D-MMM generated in Sections II-D—II-F can be used
to predict respiratory lung motion of a subject s even if no 4D
image information is available (see Fig. 6). Therefore, avail-
ability of a 3D image I ¢ acquired at the selected reference state
of the breathing cycle is presumed to permit the adaptation of
the 4D-MMM to the individual lung geometry of subject s. In
a first step, the average lung atlas I is registered with the 3D
image I, o. The resulting transformation %), is used to apply a
coordinate transformation to the mean motion fields to obtain
the model-based prediction of the subject-specific lung motion
fields: o, ; = ¥, 0@ 0 9,.

However, two problems arise. First, breathing motion of dif-
ferent individuals varies significantly in amplitude [46]. There-
fore, motion prediction using the mean amplitude will produce
unsatisfactory results. To account for subject-specific motion
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amplitudes, we propose to introduce an additional parameter A
to adapt the 4D-MMM to the individual depth of respiration. We
assume that differences in the depth of breathing can be simu-
lated by a scaling of the associated motion fields. The scaling
is performed in the Log-Euclidean, i.e., by <27§>‘J) = exp(Avs,;),
to ensure that the scaled motion field is difféomorphic. Here,
the same factor is used to scale the predicted motion fields for
all breathing phases. This means the variability of the breathing
motion is expressed by a single parameter in our model, which
could be described as “depth of respiration.” This is a sim-
plifying assumption since, e.g., chest and abdominal breathing
cannot be described in this way. However, we will evaluate the
prediction quality of this model in Section III.

Additional information is required to determine the correct
scaling factor ) for a patient. In this work, we suggest to use the
total change in lung air content AV,;, between end inspiration
and end expiration. Even without 4D CT data, this information
can be acquired by spirometry measurements, because a linear
dependency between the measured tidal volume and the air con-
tent change can be assumed [24]. But in general, other measure-
ments can also be used to calculate appropriate scaling factors,
e.g., the amplitude of the diaphragm motion or the change of the
lung volume.

Let end inspiration (EI) be the reference breathing state
and the predicted motion field between end expiration
(EE) and end inspiration @, g be given. The velocity
field 9, e = log(@, gr) is computed once by an itera-
tive scheme (see Section II-C). Given ¥, gg, the inverse
transformation ¢§_E>‘lg = exp(—Avs gg) can easily be com-
puted (alg. 1) and used to deform T, s,E1 towards end expiration:
I;ve = I;E1 0 ¢§_EAI%. We then search a scaling factor A so
that the difference in the air contents is close to AVypr : A =
arg miny |(Vair(Zs,£1) — Vair(Ls,E1 0 Q’ZEE)) — AVqi.

The air content of the reference image is computed using
the method described in [24]. The Hounsfield unit (HU) of
a lung voxel is primarily contributed by tissue (parenchyma,
blood), with approximately 55 HU, and air with —1000
HU, and the air volume of each voxel is computed by
Vair(z) = v(z)(1 — (1000 4 I, g1(z)/1000 + 55)), where
v(z) is the voxel volume.

As pointed out before by Sarrut e al. [6] and Yin et al. [47], a
deformation of image I g1 does not change voxel intensities as
it would be appropriate due to changes in lung densities during
breathing. Assuming that the tissue mass of each lung voxel
is constant during breathing, the volume change due to defor-
mation directly increases or decreases the air volume. The air
volume change of voxel x due to the deformation ¢ can then be
approximated by

1000 + IsyEI(.’II)

Vair(T3 ) = J (7, @)v(x) 1000 + 55

—v(x) @)
where v(z)(1000 + I, gr(x)/1000 + 55) is the tissue volume
(which is assumed to be constant under deformation), and
J(x, ) is the Jacobian value, i.e., the determinant of the
Jacobian of the deformation field: J(z, ) = det(Vp(x)). The
Jacobian value is greater than 1 if there is local expansion and
less than 1 if there is local contraction. A Jacobian value of 1

corresponds to no volume change. Because the tissue volume is
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TABLE I
DATA SET CHARACTERISTICS: TIDAL VOLUME AV,;, FOR LEFT AND RIGHT LUNG, TUMOR SIZE (BASED ON
TUMOR SEGMENTATION AT END-EXPIRATION), AND TUMOR LOCATION FOR THE PATIENTS CONSIDERED

Avair
Data set Left Right | Tumor size | Tumor location
Patient 01 171 ml | 193 ml 6.5 cm® | right lower lobe
Patient 02 | 338 ml | 211 ml 7.6 cm® | right upper lobe (adhering to cranial tip of the lung)
(emphysema in both lungs)
Patient 03 | 177 ml | 176 ml 12.7 cm® | left upper lobe (adhering to anterior chest wall)
Patient 04 | 167 ml | 211 ml — | left lower lobe, but no solid tumor
Patient 05 | 234 ml | 165 ml 8.2 cm® | right upper lobe (adhering to posterior chest wall)
17.3 cm® | right upper lobe (adhering to right hilum)
Patient 06 | 304 ml | 411 ml 3.4 cm?® | left lingula
1282 cm?® | close to right hilum (adhering to posterior chest wall)
Patient 07 | 365 ml | 416 ml 2.8 cm3 | right upper lobe (near cranial tip of the lung)
Patient 08 | 242 ml | 256 ml 18.4 cm® | close to right hilum
Patient 09 | 251 ml | 264 ml 88.9 cm® | right upper lobe (adhering to right hilum)
Patient 10 | 189 ml | 260 ml 96.1 cm? | right middle lobe (adhering to posterior chest wall)
Patient 11 — 17 suffer from abdominal tumors (pancreas, spleen) and are not used for the evaluation,

but for model generation only.

independent of ¢ in (7), the average Jacobian value J(¢p) and
the total volume V' of all lung voxels with I, gr(z) < —250 HU
is computed and |(1 — J(¢; pg)) - V — AVai| is minimized to
find the optimal scaling factor A. The threshold of —250 HU is
chosen to exclude large vessels from the Jacobian computation.
Breathing-related variations of the mass of the pulmonary
parenchyma due to the distension of blood vessels, and due to
the changing perfusion were reported in [4]. The variations of
tissue mass are neglected by the assumption of a constant tissue
volume. However, the variations are reported to be <10% and
the influence on the scaling factor should be small.

Beside the determination of the scaling factor, a second
problem arises when predicting individual breathing motion of
lung cancer patients. Lung tumors will impair the atlas-patient
registration because there is no corresponding structure in the
atlas. This leads to distortions in %, near the tumor region
and consequently the predicted motion fields ¢, ; are affected.
Therefore, we decided to compute %, by registering lung
segmentation masks from atlas and subject s and by omitting
the inner lung structures. In a first step, an affine alignment
of the lung surfaces is computed by the iterative-closest-point
algorithm [48]. Then, smoothed lung segmentation images
are matched by the diffeomorphic intensity-based registration
(Algorithm 2).

H. Evaluation Methods

Based on static 3D images of test cases, the generated
4D-MMM is used to predict individual breathing motion
without 4D image information as described in the last section.
The model-based prediction of the lung motion @, ; is com-
pared to the individual motion fields ¢, ; extracted from 4D CT
images by intra-patient registration. Note that ¢, ; is estimated
without 4D image information about this subject, whereas ¢, ;
relies on patient-specific 4D images.

To perform a quantitative evaluation of both methods,
anatomical landmarks in the lung are identified by medical
experts in all phases of the breathing cycle and the target

registration errors are determined. For a given motion field ¢,

k,predict k,actuall
|AL; — Al; |

the target registration error R;‘-' =
is the difference between the motion of landmark k& estimated
by ¢; and the landmark motion as observed by the medical

expert, where A% = k(T ) — lk(ISJ'),Al;?’predict =
wj(lk(fs,j)) — 1"(I,;), and I*(I) denotes the position of
landmark % in image I as identified by the medical expert.

A second evaluation procedure is related to an application
in radiotherapy. Based on expert-defined tumor segmentations,
the performance of the model-based motion prediction is as-
sessed. This aims to answer the question whether or not the
model-based motion field estimation provides a good prediction
of lung tumor motion, although the motion modeling focuses
on the representation of “healthy* lung dynamics and therefore
motions impaired by tumors or other lung diseases are not in-
cluded in the model. In this evaluation study, the distances of
the mass centers between a manual tumor segmentation in the
reference image and the transformed tumor segmentation of the
target image are used to quantify the accuracy of the predicted
tumor motion.

III. RESULTS

To capture the respiratory motion of the lung, 4D CT image
sequences were acquired from 10 lung cancer patients and
seven patients with abdominal tumors outside the lungs during
free breathing using the scanning protocol and reconstruction
method described in Section II-A. The spatial resolution of the
reconstructed 4D CT data sets is between 0.78 x 0.78 x 1.5
mm? and 0.98 x 0.98 x 1.5 mm3. Each data set consists of 3D
CT images at 10 to 14 preselected breathing phases. In this
study, we use the following 4 phases of the breathing cycle: end
inspiration (EI) (used as reference phase), 42% exhale (ME),
end expiration (EE), and 42% inhale (MI). Due to memory
and computation time restrictions, the 3D volumes were down-
sampled to a spatial resolution of 320 x 320 x 220 voxels with
1.5 x 1.5 x 1.5 mm?3. A clinical expert delineated left and right
lung and the lung tumors in the images. Characteristics (tidal
volume, tumor size, tumor location) of the acquired patient data
are shown in Table I.

The 4D images of patients 01 to 10 are used for the quan-
titative evaluation. Between 70 and 90 inner lung landmarks
(prominent bifurcations of the bronchial tree and the vessel tree)
were identified in each of the four 3D CT images for these
patients, about 3200 landmarks in total. Landmark identifica-
tion was repeated to assess the intraobserver variability. The
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TABLE II

LANDMARK MOTION AMPLITUDES ||Al5#%"*"||, MAGNITUDE OF THE INTRAOBSERVER VARIABILITY (IO) OF LANDMARK
IDENTIFICATION, AND TARGET REGISTRATION ERROR Ry FOR THE PATIENTS CONSIDERED. VALUES ARE AVERAGED
OVER ALL LANDMARKS PER PATIENT. LUNGS WITH IMPAIRED MOTION ARE INDICATED BY A GRAY TEXT COLOR

Landmark motion [mm] Target registration error Rpp [mm]

Intra-patient Model-based

Data set  Lung || [|Atkgctuel) 10 registration prediction
Patient 01 left 4,99 + 4,84 0.9 + 07 1,51 + 1,31 240 + 1,35
right 7,25 + 4,47 ’ ’ 1,41 £ 0,83 3.99 + 2,07

Patient 02 left 7,09 + 2,92 2,28 + 1,73 1.29 + 1,26
right a21 1175 | MOE00 1,16 + 0,61 3.82 + 1,10

Patient 03 left 6,15 + 2,26 0.9 + 08 1,38 £ 0,73 3.68 + 1,31
right 6,28 + 2,01 ’ ? 1,78 + 1,05 3.65 + 1,38
Patient 04 left 6,65 £+ 2,56 1.0 + 07 1,53 + 0,93 4.01 £ 1,59
right 6,22 + 3,52 ’ ’ 1,44 £+ 0,82 2.20 + 1,09
Patient 05 left 5,77 + 2,03 1.0 + 08 1,50 £ 0,80 3.17 + 1,34
right 3,18 £ 3,36 ’ ’ 1,29 + 1,04 341 £+ 1,97

Patient 06 left 9,67 + 8,32 0.8 + 0.9 1,64 £ 1,42 5.78 + 2,35
right 11,85 £+ 7,08 ’ ’ 1,60 £+ 1,00 4.69 £+ 1.90

Patient 07 left 8,22 £+ 6,52 11408 2,45 £ 222 4.02 £ 1.57
right 4,99 + 6,65 ’ ’ 1,49 + 1,48 3.35 + 1,69
Patient 08 left 5,78 &+ 4,14 0.9 + 08 1,18 4+ 0,57 3.15 + 1,70
right 6,28 £+ 5,63 ’ ’ 1,25 £+ 1,03 3.05 £+ 2.30
Patient 09 left 7,43 + 5,34 0.9 + 08 1,42 £ 1,22 2.75 + 1.40
right 8,41 4 522 ’ ’ 1,67 &+ 1,03 3.34 +2.07
Patient 10 left 7,63 + 5,83 0.8 + 0.9 1,93 £ 2,10 3.15 + 2.18
right 8,85 + 6,76 ’ ’ 1,76 + 1,33 5.08 + 2,35

mean landmark motion magnitude, i.e., the mean distance of TABLE III

corresponding landmarks, between EI and EE is 6.8 £ 5.4 mm,
(2.6 & 1.6 mm between EI and ME and 5.0 £ 2.8 mm between
EI and MI). The intraobserver variability is 0.9 &+ 0.8 mm (de-
termined in the CT data of full resolution).

A. Model Generation

In the first step, we compute the patient-specific motion fields
¢, ; describing the lung motion from maximum inhale (refer-
ence) to the other three breathing states using the algorithm de-
scribed in Section II-D. The registration parameters were deter-
mined empirically on a set of test data sets. A multi-resolution
strategy with four levels was used in all registration steps. The
regularization parameter o = 1.0 was chosen by comparing the
TRE of manually placed landmarks and a visual inspection of
the alignment of lung boundaries and vessel structures for sev-
eral values of «.. A reasonable choice for the stepwithis 7 = 1.0,
which provides fast enough convergence while maintaining sta-
bility. The latter is explained by the chosen force term (3), which
restricts the maximal magnitude of the force vectors to half of
the mean voxel spacing.

Resulting motion field estimates are visualized in Fig. 2. The
TRE of the intra-patient registration is a lower bound for the
accuracy of the model-based prediction using the 4D-MMM.
The average TRE Rgg between the reference phase (EI) and EE
for patients 01-10 (averaged over all landmarks and patients) is
1.6 1.3 mm. Details for all test data sets are shown in Table II.
The average registration residual for ME and MI is also in the
range of the voxel size (see Table III).

The estimated motion fields are used to generate a statistical
model of the respiratory motion as described in Section II-E.
The resulting model consists of the average lung image /gy and
the motion fields @y, @\, and @y describing the mean mo-
tion between the respiratory states EE, ME, MI, and the refer-
ence phase EI.

LANDMARK MOTION AMPLITUDES || Al%>**""*'|| AND AVERAGED TARGET
REGISTRATION ERROR R?; BETWEEN THE REFERENCE BREATHING PHASE (EI)
AND EE, ME, AND MI. VALUES ARE AVERAGED OVER ALL LANDMARKS
AND ALL PATIENTS

breathing Landmark Target registration error }_2]- [mm]
phase motion [mm] | intra-patient | Model-based prediction

i I Al; sactual || | registration ;Il:[:g: ‘ mllgig:d
El - EE 6.8+ 5.4 1.6+1.3 3.3+£16 | 40£20
ElI - ME 26+1.6 1.5+0.8 1.8+£1.0 | 23£1.2
EI - MI 5.0+ 2.8 1.6 £0.9 27+13 | 33+1.6

The aim of the model generation is to create a representation
of the mean healthy lung motion. In a dynamic MRI study by
Plathow et al. [49], tumors with diameter > 3 cm were shown
to influence respiratory lung dynamics. According to their ob-
servations, we divide the lungs into two groups: lungs with in-
tact dynamics and lungs with impaired motion. Lungs without
or with only small tumors (tumor volume < 14.1 cm?®, which
corresponds to a spherical tumor with a diameter & < 3 cm)
are defined as intact. Lungs with large tumors (& > 3 cm) or
lungs affected by other diseases (e.g., emphysema) are defined
as impaired. To prevent bias by pathological images we use data
sets of only intact lungs to generate the average shape and in-
tensity image Igr. To increase the number of available samples
for statistics, right and left lung are considered separately for
computation of the mean motion model. Impaired lung sides are
excluded from the mean motion computation. Sixteen data sets
remain for the model generation of the left lung and 11 data sets
for the right lung. In Fig. 3(a), a slice of the constructed average
shape and intensity image Igy is shown. An accurate registra-
tion of the lung boundary and a good registration of structures
inside the lung can be observed. Structures outside the lung are
not matched well because the registration is restricted to the lung
region. The magnitude of the displacement between maximum
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TABLE IV
TUMOR MOTION AMPLITUDE AND THE CENTER DISTANCES BETWEEN MANUAL SEGMENTED TUMOR AND
PREDICTED TUMOR POSITION BETWEEN EE AND EI IN [MM] (SEE TEXT FOR DETAILS)

Center distances o ;‘:_’.
Tumor Intra-patient Model-based 2 £
Data set  lung motion registration prediction g |7
Patient 01  right 12.20 0.45 3.35
Patient 02 right 2.15 1.44 3.90 X
Patient 03 left 6.74 0.41 391 X
Patient 05 right 2.34 1.95 5.53 X
right 1.68 1.05 4.71 X | X
Patient 06 left 19.78 2.12 6.49
right 13.78 0.97 2.85 X
Patient 07  right 1.31 0.42 0.66
Patient 08  right 6.24 0.90 2.00 X
Patient 09  right 8.35 0.29 3.18 X | X
Patient 10 right 1.77 1.01 7.38 X | X

inhale and maximum exhale of the mean motion model is visu-
alized for the left and right lung in Fig. 3(b). A smooth transition
from large motion amplitudes near the diaphragm to small mo-
tion amplitudes near the tip of the lung is visible.

B. Landmark-Based Evaluation of Lung Motion Prediction

In a first quantitative evaluation, the target registration errors
R of the model-based motion prediction are computed for the
ten test data sets. All of them were acquired from lung cancer
patients (see Table I). To be able to provide results of the model-
based prediction for healthy and impaired lungs, left and right
lungs are handled separately during the evaluation. For each test
data set, the 4D-MMM is transformed into the subject’s co-
ordinate space and used to predict landmark motion. A leave-
one-out strategy is applied to ensure that the individual patient
data is not used for the model generation. The change in lung air
content AV,;, needed for the computation of the scaling factor
A was calculated from the CT images Igr and /gy, for each lung
side and each test data set. The same factor A was used to scale
the predicted motion fields @rg, @y, and @y . Besides AV,
no 4D information is used for the model-based prediction. Fig. 4
shows the motion field predicted by the 4D-MMM and the mo-
tion field computed by patient-specific registration for patient
01. Qualitatively, a good correspondence between the two mo-
tion fields is visible, except in the right upper lobe, where small
deviations occur.

The average target registration errors Rpp are listed in
Table II for each of the test data sets and for both patient-spe-
cific and model-based motion estimation. Lungs with impaired
motion are indicated by a gray text color. Regarding Table II,
lungs with impaired motion generally show higher target regis-
tration errors for the model-based prediction than intact lungs.
An exception constitutes the left lung of patient 06, where the
highest target registration error occurs. The inspection of an
expert led to the conclusion that a strong compensatory motion
exists due to the large tumor in the right lung. In order to assess
the results for all three breathing phases EE, ME and MI the
mean landmark motion and the mean target registration errors of
the intra-patient registration are compared to the model-based
prediction quality. The results are given in Table III, where the
values of the model-based prediction are given separately for
intact and impaired lungs. The average TRE Rgg for intact

lungs is 3.3 = 1.6 mm, which is significantly lower (p < 0.05)
than for lungs with impaired motion (Rgg = 4.0 & 2.0 mm).
Significance is tested by applying a multilevel hierarchical
model with the individual R* values nested within the patient
(software: SPSS v.17); data are logarithmized to ensure normal
distribution and the model is adjusted to landmark motion.

C. Model-Based Prediction of Tumor Motion

For a second evaluation of the model, we use expert gener-
ated tumor segmentations in two breathing phases (maximum
inhale and maximum exhale) of nine patient data sets. Patient
04 is excluded because no solid tumor could be delineated. The
4D-MMM is transformed into the coordinate space of each test
data set (see Section II-G) and then used to warp the expert gen-
erated tumor segmentation at maximum exhale towards max-
imum inhale. To evaluate the accuracy of the model-based pre-
diction, the distances of the mass centers of tumor segmenta-
tions were calculated: 1) between the unregistered inhale and
exhale expert segmentation images (tumor motion amplitude),
2) between the inhale segmentation and the exhale segmenta-
tion warped by the deformation field obtained by the intra-pa-
tient registration, and 3) between the inhale segmentation and
the exhale segmentation warped by the 4D-MMM.

Corresponding results are summarized in Table IV. Large tu-
mors withadiameter > 3 cminfluence respiratory lung dynamics
and are marked in the table as large. Furthermore, it has turned
out that the model-based prediction of the tumor motion is de-
graded if the tumor adheres to anon-lung structure. In these cases,
the model presumes that the tumor moves like surrounding lung
tissue, whereas, it rather moves like the adjacent non-lung struc-
ture (e.g., chest wall or hilum). The last column in Table IV marks
those tumors. The model-based predicted motion of the tumor
mass center from EI to EE ranges from 0.66 to 7.38 mm. There
is no significant correlation between the tumor motion amplitude
and the accuracy of the model-based predicted mass center (r =
0.19,p = 0.15). Furthermore, it cannot be shown that the pre-
diction accuracy for small tumors is significantly better than for
large tumors (p = 0.4). However, the model-based prediction
accuracy of non-adherent tumors is significantly better than for
tumors adhering to chest wall or hilum (p < 0.05). Significance
is tested by applying a linear mixed model (software: SPSS v.17)
and the model is adjusted to tumor motion.
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Fig. 7. Visualization of the internal target volume (ITV) of patient 01 in a
coronal (left) and sagittal (right) CT slice. The ITV was calculated from ex-
pert-defined tumor segmentations in EI, EE, ME, and MI (yellow contour) and
from tumor positions predicted by the average motion model (red contour).

D. Application Examples

The capability of the 4D-MMM to predict tumor motions for
radiotherapy planning is exemplarily illustrated for patient 01.
As shown in Sections III-B and III-C, model-based prediction
accuracy is decreased for large tumors and tumors adhering to
non-lung structures, and the model cannot be applied in these
cases. Patient 01 shows a small tumor not adherent to another
structure, and a therapeutic relevant tumor motion of 12.2 mm
(respiratory motion management is appropriate when target mo-
tion is > 5 mm [1]). The prediction accuracy of the tumor mo-
tion from EI to EE of 3.54 mm is near the landmark-based av-
erage registration residual of intact lungs. The internal target
volume (ITV) in 3D conformal radiotherapy contains the com-
plete range of motion of the tumor [50]. For this patient, the ITV
is first calculated from expert-defined tumor segmentations in
the images acquired at EI, EE, ME, and MI. In a second step,
the expert segmentation in EI is warped to EE, ME and MI using
the 4D-MMM and the ITV is calculated based on the warped
results. The outlines of both ITVs are shown in Fig. 7. Please
note that beside the calculated scaling factor A no patient-spe-
cific motion information is used for the model-based prediction.

A second example demonstrates that the 4D-MMM could be
helpful from the perspective of image-guided diagnosis. Here,
the motion pattern of individual patients are compared to a
“normal” motion, represented by the mean motion model. In
Fig. 8, the magnitude of the difference between the individual
motion field i computed by intra-patient registration and the
model-based predicted motion field ¢y is shown for patient
10. The left lung shows differences of about 3 mm, whereas
the large differences to the intact lung motion indicate that the
respiratory dynamics of the right lung are influenced by the
large tumor. Very high differences are visible near the tumor,
because the tumor is adhering to the posterior chest wall and
does not follow the lung motion.

IV. DIscUSSION AND CONCLUSION

In this paper, we addressed the problem of extracting, mod-
eling and predicting respiratory motion. We proposed a method
to generate an inter-subject statistical model of the breathing
motion, based on individual motion fields extracted from 4D
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CT images of 17 patients. Methods for using this model to pre-
dict patient-specific breathing motion without knowledge of 4D
image information were presented. Ten 4D CT data sets were
used to evaluate the accuracy of the image-based motion field
extraction and the model-based motion field prediction.

A symmetric diffeomorphic nonlinear intensity-based regis-
tration method was used to extract patient-specific breathing
motion. The mean error after registration (TRE) between EI and
EE images was 1.6 = 1.3 mm. Comparing these results to other
studies [51], [52] and taking image resolution (1.5 X 1.5 x 1.5
mm?) into account, we consider the TRE states a lower bound
of registration accuracy.

The extracted patient-specific motion fields were used to gen-
erate an inter-subject statistical model of the breathing motion.
Inter-patient correspondence was established by patient-atlas
registration with an average shape and intensity atlas of the
lung and the Log-Euclidean framework [20] was used for the
required computations of statistics on the diffeomorphic trans-
formations. Although built on only a small patient population,
the computed mean motion model presents a typical respiratory
motion pattern.

The average motion model is adapted to unseen data by a
registration of the model lung surface with the lung surface in
the reference image of the new patient, to cope with tumors or
other pathological structures. The end inspiration image is used
as reference image because the total change in lung air con-
tent between end inspiration and end expiration is used as pa-
tient-specific motion indicator. Caused by our limited test data
set we compute different scaling factors for left and right lungs
to provide results of the model-based prediction for healthy and
impaired lungs. This would obviously not be possible if the
scaling factor was really calculated from spirometry and pre-
diction quality may be influenced by this. However, these influ-
ences should be small for intact lungs. As noted in Section II-G,
alternative measures can be used, e.g., the motion of the di-
aphragm or other anatomical landmarks, and in this case again
a calculation of different scaling factors for each lung is pos-
sible. Furthermore, other breathing phases could be used as ref-
erence, e.g., some mid-ventilation images. However, taking the
symmetric behavior of our registration approach into account,
Table III indicates that such a change of the reference image
would have only small effects on the TRE for intra-patient reg-
istration. Further, the choice of EE or EI images is favorable for
inter-patient registration, since mid-ventilation images are more
affected by motion blurring in general.

In a first landmark-based evaluation, the 4D-MMM achieved
an average prediction error (TRE) for the motion between EI
and EE images of 3.3 £ 1.6 mm. The model was built based
on lungs with intact respiratory dynamics. It was shown that the
prediction precision is significantly lower for lungs affected by
large tumors (4.0 £ 2.0 mm). These results indicate (at least
for the 10 lung tumor patients considered) that large tumors
seem to considerably influence respiratory lung dynamics. This
finding is in agreement with Plathow et al. [49]. Comparing our
results to a biophysical finite element (FEM) approach for pa-
tient-specific modeling of respiratory lung motion [53], we no-
tice that the 4D-MMM-based prediction quality is only slightly
worse for intact lungs (FEM approach: 2.9+ 1.6 mm) and in the
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(b)

Fig. 8. Difference between lung motion estimated by patient-specific registration and lung motion predicted by the 4D-MMM. (a) CT slice of patient 10 with lung
contour (yellow) and tumor adhering to the posterior chest wall. (b) Magnitude of the difference between the individual motion field computed by intra-patient
registration and the model-based predicted motion field for this slice. Left lung shows intact lung motion, dynamics of the right lung is impaired by the large tumor.

same order for lungs impaired by large tumors (FEM approach:
4.4 £ 2.5 mm). However, the finite element approach presented
in [53] relies on patient-specific 4D images.

In addition, we applied the 4D-MMM to predict patient-
specific tumor motions. No correlation between prediction
accuracy and tumor size or tumor motion amplitude could
be detected (at least for our test data sets). We revealed that
tumors adhering to non-lung structures degrade local lung
dynamics significantly and model-based prediction accuracy is
decreased for these cases. Due to the limited test set, only two
patients remain with unimpaired dynamics and with tumors not
adhering to a non-lung structure (patient 01 and 07). Therefore,
statistically significant conclusions are not possible, although
we believe that the motion model is suitable for tumor motion
prediction in such a case. From the perspective of the radiation
therapy, especially small lung tumors with serious motion am-
plitudes represent a great challenge for an improved treatment.
At the current state, the 4D-MMM could be applied, e.g., to
improve RT planning by estimation of the motion impact on
dose distributions.

We further conclude from our results that a statistical res-
piratory motion model has the capability to provide valuable
prior knowledge in many fields of applications. We presented
two examples of possible applications in radiation therapy and
image guided diagnosis. A model-based reduction of uncer-
tainties caused by breathing motion can also be valuable to
improve image acquisition or to make subject-specific motion
estimation algorithms more robust and precise. Though the
current 4D-MMM focuses on inter-patient variations, it can
be straightly adapted to intra-patient variations in breathing
patterns. Consequently, the model could be applied to improve
guidance in gated or tracked RT treatment. An adaptive ad-
justment of the scaling factor could be realized by additionally
monitoring motion indicators (e.g., expiratory volume, di-
aphragm motion). However, for such a clinical implementation
numerous obstacles have to be overcome, which are beyond the
scope of this paper. Here, we explored the principle possibilities
and restrictions of the model and showed that it yields a reason-

able prediction quality. Moreover, we think that there should
be many other potential clinical applications besides the field
of radiation therapy, because the modeling techniques can also
be adapted to other organs and other dynamic processes in the
body (e.g., heart motion or respiration induced liver motion).

Currently, the statistical motion model represents the average
motion in the training population. In a preliminary study, the
influence of size and composition of the training data set on
modeling accuracy was investigated. Further, first steps were
done to include the variability of the motion into the model [54].
This will be a main focus of our future work. Here, the Log-Eu-
clidean framework provides a suitable instrument for more de-
tailed inter-patient statistics, like e.g., a principal geodesic anal-
ysis of the diffeomorphic transformations describing the pa-
tient-specific breathing motion. To ensure reasonable statistics
and to improve the accuracy of the motion model, we will in-
crease the number of subjects and the number of breathing states
included. The quality of the motion model and the model-based
prediction accuracy is mainly influenced by the accuracy of
the registration steps involved, and the assessment of the pa-
tient-atlas registration is an essential task. However, evaluation
of such an inter-subject registration is difficult and will be one
focus of our future research. Another focus of research involves
investigating the viability of the model in different fields of
application.
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