
Chapter	1

Introducing	the	Omnivision	OV7670
Camera

In	this	chapter	I	cover	the	Omnivision	ov7670	camera.	First,	a	short	description	of	the
camera	is	given	followed	by	some	photos of	the	camera	itself.	Then	key	digital	camera
terminology	needed	to	understand	key	concepts	in	this	book	are	covered.	I	then	give	a
more	in	depth	explanation	of	the	camera	including	details	of	each	key	part	and	the	steps
by	which	an	image	is	captured,	processed	and	transmitted	to	the	Arduino.



What	is	the	OV7670	Camera?

The	ov7670	camera	is	a	low	cost	widely	available	CMOS	camera	made	by	Omnivision
Technologies	located	in	Santa	Clara,	California.	It	comes	in	two	versions	one	without
frame	buffer	memory	and	one	with	frame	buffer	memory	which	is	commonly	called	the
FIFO	version.	In	this	book	we	will	use	the	version	with	the	FIFO	frame	buffer	memory.
The	frame	buffer	memory	holds	image	data	that	has	been	captured	from	the	camera.	The
image	data	can	then	be	transferred	from	the	frame	buffer	memory	to	the	Arduino’s
memory	or	to	a	storage	device	such	as	a	SD	Card.	The	ov7670	camera	can	be	used	with
the	Arduino	through	its	SCCB	interface	that	is	compatible	with	the	Arduino’s	I2C
interface.	The	camera	can	be	focused	manually	by	turning	the	camera	lens	clockwise	and
counterclockwise	which	moves	the	lens	outward	and	inward.	The	camera	lens	clockwise
and	counterclockwise	which	moves	the	lens	outward	and	inward.	The	1	shows	a	photo	of
the	back	side	of	an	ov7670	camera	with	frame	buffer	memory	labelled	“Averlogic”.	Figure
1-2	shows	a	photo	of	the	front	of	an	ov7670	camera.	Figure	1-3	shows	a	picture	captured
from	a	ov7670	camera.



Figure	1-1.	ov7670	FIFO	camera	version	back	side	showing	the	Averlogic	frame	buffer
memory



Figure	1-2.	ov7670
FIFO	camera	version	front	side	showing	camera	lens

Figure	1-3.	Picture	captured	from	an	ov7670
camera



Key	Camera	Terminology

This	section	covers	key	terms	related	to	digital	cameras	and	traditional	cameras.

•	Pixel	– A	pixel	is	the	smallest	unit	that	makes	up	a	digital	image.	It	is	generally	a	small
square	illuminated	element	that	can	take	on	various	colors.	For	example,	in	Figure	1-4	you
can	see	that	the	number	“0”	is	composed	of	many	pixels	represented	in	the	figure	by	black
squares.

Figure	1-4.	Group	of	pixels	representing	the	image
of	the	letter	“O”
•	Resolution	–	Resolution	refers	to	the	width	and	height	of	an	image	in	pixels.
•	VGA	–	VGA	refers	to	a	camera	resolution	that	generates	images	that	are	640	pixels	wide
and	480	pixels	high.
•	QVGA	–	QVGA	refers	to	a	camera	resolution	that	generates	images	that	are	320	pixels
wide	and	240	pixels	high.

•	QQVGA	–	QQVGA	refers	to	a	camera	resolution	that	generates	images	that	are	160
pixels	wide	and	120	pixels	high.	See	Figure	1-5	for	a	comparison	of	the	VGA,	QVGA,
and	QQVGA	resolutions.



Figure	1-
5.	Comparison	of	VGA,	QVGA,	and	QQVGA	resolutions

•	CIF	–	CIF	refers	to	a	camera	resolution	that	generates	an	image	that	is	352	pixels	wide
and	288	pixels	high.	See	Figure	1-6	for	a	comparison	with	the	VGA	modes.

Figure	1-



6.	Comparison	of	CIF	with	VGA,	QVGA,	and	QQVGA	resolutions

•	YUV	–YUV	is	an	image	encoding	method	and	is	discussed	in	more	detail	later	in	this
book.	The	pixels	that	make	up	a	digital	image	must	be	represented	internally	in	an	image
format	and	YUV	is	one	of	the	available	image	formats	used	to	represent	these	pixels.	The
YUV	format	incorporates	luminance	or	brightness	values	and	color	values.
•	YCbCr	– YCbCr	is	an	image	encoding	method	and	is	discussed	in	more	detail	later	in
this	book.	The	pixels	that	make	up	a	digital	image	must	be	represented	internally	in	an
image	format	and	YCbCr	is	one	of	the	available	image	formats	used	to	represent	these
pixels.	In	the	YCbCr	image	format	a	pixel	incorporates	luminance	or	brightness	values,
blue	intensity	values,	and	red	intensity	values.

•	RGB	–	RGB	is	an	image	encoding	method	and	is	discussed	in	more	detail	later	in	this
book.	The	pixels	that	make	up	a	digital	image	must	be	represented	internally	in	an	image
format	and	RGB	is	one	of	the	available	image	formats	used	to	represent	these	pixels.	In
the	RGB	image	format	each	pixel	contains	a	red,	green,	and	blue	component.	The	red,
green,	and	blue	components	are	added	to	get	a	final	color.	The	red,	green,	and	blue
components	set	at	the	highest	setting	add	up	to	white	light.	The	red,	green,	and	blue
components	set	to	the	lowest	setting	represent	the	color	black.	See	Figure	1-7.

Figure	1-7.
RGB	image	format

•	Raw	Bayer	RGB	–	Raw	Bayer	RGB	is	an	image	format	where	each	pixel	consists	of	raw
sensor	data	of	either	red,	green,	or	blue	depending	on	the	color	filter	at	that	pixel	location.
Raw	Bayer	is	the	format	the	photo	is	initially	captured	in	before	further	processing.	Raw
Bayer	is	discussed	more	in	depth	later	in	this	book.

•	Demosaicing	–	Demosaicing	is	the	process	by	which	a	raw	bayer	RGB	image	can be
transformed	into	a	full	color	image.

•	Exposure	–	Exposure	is	the	amount	of	light	per	unit	area	and	can	be	increased	by
capturing	a	photo	over	a	longer	period	of	time	or	decreased	by	capturing	a	photo	over	a
shorter	period	of	time.	The	end	result	is	that	the	longer	the	exposure	the	brighter	the
captured	image	will	be.	The	shorter	the	exposure	the	darker	the	captured	image	will	be.



•	AEC	–	AEC	stands	for	Automatic	Exposure	Control	and	means	that	the	camera	will
adjust	the	exposure	setting	according	to	certain	parameters.

•	AGC	–	AGC	stands	for	Automatic	Gain	Control	and	controls	the	luminance	or
brightness	of	the	photo	that	is	taken.
•	White	Balancing	–	White	Balancing	is	the	adjustment	of	the	colors	in	an	image	generally
the	colors	red,	green,	and	blue	for	correcting	neutral	colors	such	as	gray	or	white	so	that
they	appear	grey	or	white	in	the	photo.

•	AWB	–	AWB	stands	for	Automatic	White	Balancing	which	means	that	the	camera	will
automatically	adjust	the	colors	of	the	image	so	that	neutral	colors	such	as	grey	or	white
will	appear	grey	or	white	in	the	captured	photo.

•	BLC	–	BLC	stands	for	Black	Level	Calibration	which	adjusts	the	level	of	black	in	the
image	with	the	objective	of	matching	true	black	(zero	brightness)	in	the	environment	to
true	black	in	the	corresponding	captured	image.

•	ABLC –	ABLC	stands	for	Automatic	Black	Level	Calibration	that	automatically	adjusts
the	black	level	in	the	captured	image	according	to	certain	parameters.



OV7670	Camera	with	AL422B	FIFO	Memory	Overview

This	section	gives	an	in	depth	description	of	the	ov7670	camera.	First,	the	general
capabilities	of	the	camera	are	summarized.	Then	each	functional	component	of	the	camera
is	described	in	detail.	This	is	followed	by	a	step	by	step	description	of	how	an	image	is
captured	by	the	camera	and	then	transferred	to	the	Arduino.

General	Summary	Of	Capabilities

•	Good	low	light	operation	by	using	NightMode
•	Low	operating	voltage	(3.3	Volts)	suitable	for	embedded	portable	apps	such	as	Arduino
based	projects
•	Maximum	frame	capture	rate	of	30	frames	per	second	using	VGA	resolution
•	Compatible	with	Arduino	though	use	of	the	camera’s	SCCB	interface	which	is
compatible	with	Arduino’s	I2C	interface
•	Supports	raw	Bayer	RGB,	RGB,	YUV,	and	YCbCr	image	formats	as	output
•	Supports	VGA,	QVGA,	QQVGA	resolutions

•	Automatic	image	control	functions	including:	Automatic	Exposure	Control,	Automatic
Gain	Control,	Automatic	White	Balance,	Automatic	Black	Level	Calibration.

•	Supports	other	image	processing	features	such as	edge	enhancement,	denoise	operations,
and	color	correction.
•	384K	(393,216)	bytes	frame	buffer	memory	which	is	enough	to	hold	a	VGA	screen
capture	in	raw	Bayer	format.

Camera	Functional	Block Diagram

This	section	discusses	the	individual	components	of	the	Omnivision	ov7670	camera.	Each
component	is	labeled	with	an	alphabet	enclosed	in	a	circle.	Each	of	these	components	is
then	discussed	in	detail.	See	Figure	1-8	for	the	full	camera	functional	block	diagram.



Figure	1-8.	OV7670	Camera	Functional	Block	Diagram

A.	Camera	Lens

The	ov7670	has	a	lens	that	can	be	adjusted	by	screwing	it	in	or	out	to	adjust	the	focus	of
the	image	to	be	captured.	Light	first	comes	through	this	lens	before	hitting	the	camera’s
image	array.	See	Figure	1-9.

Figure	1-9.	Camera	Lens

B.	Image	Array

The	camera’s	image	array	captures	the	incoming	image	and	is	656	pixels	wide	and	488
pixels	high.	See	Figure	1-10.



Figure	1-10.	Camera’s	Image	Array

The	image	array	is	covered	with	color	filters	arranged	in	a	blue-green/green-red	pattern.
That	is	one	row	would	contain	color	filters	alternating	between	blue	and	green	covering
the	sensor	pixel	one	row	would	contain	color	filters	alternating	between	blue	and	green
covering	the	sensor	pixel	11.

Figure	1-11.	BG/GR	Bayer	Filter	Pattern

The	way	the	bayer	color	filters	work	is	that	the	red,	green,	and	blue	filters	only	allow	in
the	red	green,	or	blue	component	of	the	light	reflected	from	the	image	and	this	intensity
level	is	measured	by	the	image	sensors	located	on	the	pixel	cells	of	the	image	array.	See
Figure	1-12.	In	case	A	only	the	red	light	component	is	measured	by	the	pixel	cell	sensor.
In case B only the green light component is measured by the image sensor. In case C only
the	blue	light	component	is	measured.	Thus,	each	pixel	in	a	raw	bayer	format	image
represents	the	intensity	level	of	either	red,	green,	or	blue	light.	Each	final	image	pixel
must	contain	red,	green,	and	blue	information	for	the	pixel	to	be	correctly	displayed.
Therefore,	the	raw	bayer	image	must	go	through	a	process	called	demosaicing	to	estimate
the	missing	two	color	components	needed	to	display	the	pixel	correctly.

The	YUV	and	YCbCr	camera	output	formats	use	the	camera’s	built	in	demosaicing
algorithms	to	generate	the	final	correct	image.	The	values	of	each	pixel	in	the	final	image
are	determined	by	the	light	hitting	that	pixel	directly	as	well	as	the	light	hitting	the
surrounding	pixels.	The	camera	can	also	generate	GRB,	RGB555/RGB565	formats	which
are	converted	from	YUV/YCbCr.	The	raw	bayer	images	can	be	demosaiced	using	a	free
public	domain	program	called	FFMPEG.	I	discuss	FFMPEG	later	on	in	this	book	as	well
as	these	image	formats.



Figure	1-12.	How
Bayer	Color	Filters	Work

C.	Analog	Processing

The	ov7670’s	analog	processing	includes	exposure	control,	gain	control,	and	black	level
calibration	control.	Gain	controls	can	be	set	to	manual	or	automatic.	The	term	gain	refers
to	the	luminance	or	brightness	of	the	image.	Setting	the	gain	to	automatic	tells	the	camera
to	control	the	image’s	brightness	automatically	without	any	other	control	inputs	supplied
by	the	user.	Black	level	calibration	can	be	set	to	manual	or	automatic	and	adjusts	the	black
color	in	the	captured	image	as	close	to	the	actual	image	as	possible.	The	exposure	control
can	be	set	to	manual	or	automatic.	The	(AEC)	automatic	exposure	control	methods	used
can	be	average	based	or	histogram	based.	(AEC)	Automatic	exposure	control	and	(AGC)
automatic	gain	control	share	the	same	algorithms	and	are	used	together	to	adjust	the
overall	luminance	or	brightness	of	the	image.	See	Figure	1-13.

Figure	1-13.	Analog	Processing

The	strategy	in	average	based	control	of	AEC	and	AGC	involves	changing	the	exposure
and	gain	fast	if	the	measured	luminance	is	outside	the	control	zone.	Once	the	luminance	is
within	the	control	zone	the	exposure	and	gain	is	changed	in	smaller	amounts	until	the
measured	luminance	is	within	the	stable	operating	region.	Once	within	the	stable	operating
region	there	are	no	further	changes	to	the	camera’s	exposure	and	gain.	See	Figure	1-14.



Figure	1-14.	Average	AEC/AGC

For	the	histogram	method	the	exposure	and	the	gain	are	changed	until	the	luminance
histogram	reaches	the	desired	distribution.	We	discuss	the	average	based	and	histogram
based	AEC	and	AGC	control	methods	more	in	depth	later	in	this	book.

D.	Camera	Registers

The	registers	in	the	ov7670	camera	are	memory	cells	that	are	1	byte	or	8	bits	in	length	and
hold	values	that	are	used	to	control	the	camera’s	functions	such	as	resolution,	image
output	format,	exposure,	gain,	frame	rate,	etc.	If	you	are	new	to	digital	design	I	discuss
bytes	and	bits	later	in	this	book	so	don’t	worry	if	you	are	unfamiliar	with	these	terms.	You
can	set	and	read	the	values	of	these	registers	through	the	camera’s	SCCB	interface	using
the	Arduino.	See	Figure	1-15.

Figure	1-15.	Camera	Registers

E.	SCCB	Interface

This	interface	is	used	to	read	data	from	the	camera’s	registers	and	to	write	data	to	the
camera’s	registers.	The	SCCB	interface	on	the	camera	is	compatible	with	the	Arduino’s
I2C	interface	and	code	used	to	activate	and	use	the	I2C	interface	will	work	with	the
camera’s	SCCB	interface	without	any	modifications.	There	are	two	pins	which	are	the
clock	which	is	labeled	the	SIO_C	and	the	data	which	is	labeled	SIO_D.	The	SIO_C	is	the
same	as	the	SCL	on	the	I2C	interface	and	the	SIO_D	is	the	same	as	the	SDA	on	the	I2C
interface.
The	SIO_C	is	connected	to	the	Arduino	UNO	through	analog	pin	5	and	is	connected	to	the



Arduino	MEGA	through	digital	pin	21.	The	SIO_D	is	connected	to	the	Arduino	UNO
through	analog	pin	4	and	connected	to	the	Arduino	MEGA	through	digital	pin	20.	See
Figure	1-16.

Figure	1-16.	The	SCCB
Interface

F.	Test	Pattern	Generator

The	test	pattern	generator	is	used	to	display	a	standard	set	of	vertical	colored	bars	that	are
used	to	determine	if	the	camera	is	working	properly.	Not	only	should	a	vertical	group	of
colored	bars	be	displayed	clearly	but	the	colors	must	also	be	in	the	right	order.	We	get	into
more	detail	regarding	the	test	pattern	generator	later	in	this	book.	See	Figure	1-17.

Figure	1-17.	The	Test	Pattern	Generator

G.	Analog	to	Digital	Converter

The	analog	to	digital	converter	converts	the	raw	bayer	image	from	the	image	array	to	a
digital	format	using	a	10	bit	converter.	See	Figure	1-18.

Figure	1-18.	A/D	Converter

H.	50/60	Hz	Auto	Detect

The	50/60	Hz	auto	detect	can	automatically	detect	the	frequency	of	artificial	light	such	as
florescent	light	used	in	an	office	or	home.	This	feature	can	be	used	with	the	camera’s	band
filter	features	to	remove	any	light	banding	that	may	occur	in	an	image.	See	Figure	1-19.



Figure	1-19.	50/60	Hz	Auto	Detect

I.	Exposure/Gain	Detection	and	Control

This	component	of	the	camera	is	responsible	for	detecting	and	controlling	the	exposure
and	gain	of	the	image	that	is	processed	in	the	analog	processing	block.	It	receives	control
information	from	the	camera’s	registers	and	then	sets	the	exposure	and	gain	accordingly.
For	automatic	exposure	and	automatic	gain	control	the	camera	automatically	controls	the
exposure	and	gain	based	on	the	exposure	and	gain	detected	in	the	incoming	image.	See
Figure	1-20.

Figure	1-20.	Exposure/Gain	detection	and	control

J.	Digital	Signal	Processor	(DSP)

The	digital	processor	or	(DSP)	receives	digital	image	data	from	the	analog	to	digital
converter	and	is	responsible	for:
•	White	Balance	Control
•	Gamma	Control
•	Color	Matrix
•	Sharpness	Control
•	De-Noise
•	Automatic	Color	Saturation	Adjustment
•	Defect	Pixel	Correction
See	Figure	1-21.



Figure	1-21.	Digital	Signal	Processing	(DSP)
White	Balance	Control

The	white	balance	control	for	the	camera	allows	for	both	manual	and	automatic	control.
The	objective	of	white	balance	control	is	to	make	the	white	colors	in	the	image	white
regardless	of	light	color	and	can	be	set	to	normal	(simple)	mode	or	advanced	mode.

The	normal	mode	for	automatic	white	balance	makes	the	average	values	of	the	red,	green,
and	blue	colors	for	all	the	pixels	in	the	image	equal	by	changing	the	red,	green,	and	blue
gains.	It	assumes	that	the	average	of	all	the	colors	in	the	world	is	gray.	The	normal	or
simple	mode	does	not	depend	on	the	characteristics	of	the	camera	lens	being	used	to	take
the	photo.

The advanced mode for automatic white balance uses the color temperature to adjust the
red,	green,	and	blue	gains.	The	advanced	mode	depends	on	the	characteristics	of	the
specific	lens	that	is	being	used	to	take	the	picture.

A	separate	pre-gain	value	for	the	red,	green,	and	blue	channels	is	also	supported.
Gamma	Control

Gamma	control	provides	gamma	correction	to	the	image	which	controls	its	luminance	or
brightness.	The	user	can	set	individual	values	that	define	a	gamma	curve	that	is	used	to
lighten	or	darken	the	image.

Color	Matrix

The	color	matrix	can	perform	color	correction	and	color	conversion	on	the	camera’s
image.	The	color	matrix	is	used	in conversion	from	raw	bayer	RGB	to	YUV/YCbCr.	The
matrix	itself	is	3	by	3	and	is	active	in	image	formats	YUV/YCbCr	and	image	formats
derived	from	YUV/YCbCr	such	as	RGB565,	RGB555,	and	RGB444.

Raw	RGB	values	are	converted	to	Cr	and	Cb	values	by	multiplying	the	RGB	value	of	a
pixel	by	the	ColorMatrix.	The	Y	value	is	taken	directly	from	the	camera’s	sensor	and	is
not	affected	by	the	ColorMatrix.	See	Figure	1-22.



Figure	1-22.	YCbCr	color	matrix	use

The	ColorMatrix	is	built	from	the	values	in	camera	registers	MTX1,	MTX2,	MTX3,
MTX4,	MTX5,	and	MTX6.	All	that	is	needed	is	to	set	those	registers	and	the	camera	will
use	the	new	values	in	converting	the	original	picture	into	the	final	image.	See	Figure	1-23.

Figure	1-23.	The	ColorMatrix
value
The	same	matrix	is	used	for	conversion	of	RGB	values	to	YUV.	See	Figure	1-24.

Figure	1-24.	YUV	color	matrix	use
Sharpness	or	Edge	Enhancement	Control

The	sharpness	control	can	be	either	set	to	manual	or	automatic.	The	sharpness	feature	only
works	on	processed	bayer,	YUV/YCbCr	images	or	those	that	are	derived	from	them.	The
raw	bayer	image	does	not	contain	any	digital	processing	including	sharpness	or	edge
enhancement	adjustments.	If	the	sharpness	control	is	set	to	automatic	then	the	sharpness
will	vary	according	to	a	limits	supplied	by	the	user	in	the	camera	registers	REG75	and
REG76.	In	automatic	mode	the	sharpness	changes	inversely	with	the	gain.	For	example,
the	higher	the	gain	the	lower	the	sharpness.

De-Noise

The	camera	has	a	built	in	de-noise	function	that	can	be	set	to	manual	or	automatic	mode.
In	automatic	mode	the	de-noise	level	is	proportional	to	the	gain.	That	is	the	greater	the
gain	the	stronger	the	de-noise	applied	to	the	image.	The	de-noise	function	will	work	on
processed	bayer	RGB,	YUV/YCbCr	or	any	derived	format	such	as	RGB555,	RGB565,
and	RGB444.	De-noise	will	not	work	on	raw	bayer	RGB	since	that	format	does	not	go
through	the	digital	signal	processor.

Automatic	Color	Saturation	Adjustment	The	camera	an	automatically	adjust	color
saturation	based	on	gain.	The	higher	the	gain	the	weaker	the	color.
Defect	Pixel	Correction	The	camera	has	built	in	pixel	error	correction	to	compensate	for
bad	pixels	on	the	image	array.

K.	Image	Scaler

The	image	scaler	reduces	the size	of	the	VGA	image	(if	desired)	that	is	output	by	the



camera’s	digital	signal	processor. All	other	resolutions	are	produced	by	scaling	down	the
VGA	image.	See	Figure	1-25.

Figure	1-25.	Image	Scaler

L.	FIFO	Frame	Buffer	Memory

The	FIFO	frame	buffer	memory	is	made	by	AverLogic	and	the	model	is	AL422B.	It	holds
the	image	so	that	it	can	be	read	in	by	the	Arduino.	It	is	384K	which	is	enough	to	hold	a
VGA	raw	bayer	RGB	image	of	1	byte	per	pixel	with	a	resolution	of	640	pixels	wide	by
480	pixels	high.	See	Figure	1-26.	An	important	item	to	be	aware	of	is	that	the	FIFO
memory	can	only	hold	1	byte	per	pixel	at	VGA	resolution.	If	you	attempt	to	write	more
than	1	byte	per	pixel	to	the	frame	buffer	at	VGA	resolution	such	as	trying	to	use	the	YUV
image	format	mode	with	VGA	then	the	image	you	get	will	be	incorrect.



Figure	1-26.	AverLogic	AL422B	FIFO	memory

M.	Video	Port

The	image	from	the	FIFO	memory	can	be	output	through	the	camera’s	video	port.	The
video	port	is	1	byte	or	8	bits	in	length.	Thus,	we	will	need	to	read	the	image	data	from	the
camera’s	video	is	1	byte	or	8	bits	in	length.	Thus,	we	will	need	to	read	the	image	data	from
the	camera’s	video	27.

Figure	1-27.	Video	Port

Summary	of	Steps	Needed	for	Taking	a	Photo

This	section	gives	a	general	overview	of	what	steps	occur	when	an	image	is	captured,
processed	and	transferred	to	the	Arduino	using	the	Omnivision	ov7670	digital	camera.	See
Figure	1-28.	



Figure	1-28.	Steps	in	taking	a	photo

Step	#0	–	Setting	the	Camera’s	Registers

A	preliminary	step	before	capturing	the	image	is	to	set	the	camera	resolution,	set	the
image	output	format,	and	set	other	image	processing	parameters	that	the	user	desires.	This
is	done	by	the	Arduino	using	the	ov7670	camera’s	SCCB	interface	to	write	the	required
values	to	the	camera’s	registers.

Step	#1	–	The	Camera	Lens

The	image	that	is	to	be	captured	by	the	camera	must	first	go	through	the	camera’s	lens.	It
is	here	that	the	focus	can	be	adjusted	by	the	user	by	screwing	the	lens	clockwise	or
counterclockwise	to	get	a	clear	image.

Step	#2	–	The	Image	Array

The	image	array	receives	the	incoming	image	after	it	goes	through	the	camera’s	lens.	Here
the	camera’s	pixel	cell	sensors	detect	the	red,	green,	and	blue	components	of	the	incoming
light.	These	pixel	cell	sensors	are	arranged	in	a	raw	bayer	image	format	of	alternating
rows	of	bluegreen/green-red	pattern.

Step	#3	–	Analog	Processing



Next,	the	image	goes	through	analog	processing	where	the	analog	items	like	the	image
exposure	and	gain	are	adjusted	according	to	the	camera’s	register	values.

Step	#4	–	A/D Converter

Next,	the	analog	image	is	sent	through	the	analog	to	digital	converter	that	converts	the
image	into	its	digital	form	of	bytes	consisting	of	0’s	and	1’s.

Step	#5	–	Digital	Signal	Processor

Then,	the	image	is	processed	by	the	digital	signal	processor	that	handles	things	like	white
balance,	edge	enhancement,	and	de-noising.

Step	#6	–	Image	Scaler

Next,	the	digitally	processed	image	is	sent	to	the	image	scaler	where	it	is	reduced	in	size
according	to	the	values	in	the	camera	registers	that	control	the	size	of	the	final	image	that
is	output.	Remember	that	all	images	are	first	captured	in	VGA	resolution	but	can	be	scaled
down	using	the	image	scaler.

Step	#7	–	FIFO

Then,	the	final	scaled	image	is	sent	to	the	FIFO	frame	buffer	memory	which	holds	the
image	so	that	it	can	be	read	and	output	to	the	Arduino.

Step	#8	–	Video	Port

Next,	the	video	port	which	consists	of	8	output	pins	representing	8	bits	or	1	byte	is	the
actual	physical	point	where	wires	are	attached	in	order	to	send	the	image	data	out	to	the
device	that	will	receive	the image	data.

Step	#9	–	Arduino

Finally,	the	wires	from	the	video	port	on	the	camera	are	connected	to	pins	on	the	Arduino
designated	as	input	pins.	From	there	the	image	data	is	read	in	one	byte	at	a	time	until	the
entire	image	is	processed.	For	example,	the	image	can	be	saved	to	a	SD	card	or
transmitted	via	bluetooth	to	an	Android	device	to	be	displayed.



Summary

In	this	chapter	I	covered	the	Omnivision	ov7670	camera.	I	started	with	a	discussion	of	key
terms	and	concepts	relating	to	digital	cameras	that	were	essential	in	understanding	the	rest
of	the	book.	Then	I	went	into	a	detailed	discussion	of	the	camera	involving	key	functions
and	then	I	discussed	the	steps	an	image	went	through	when	being	captured,	processed	and
then	sent	from	the	camera	to	the	Arduino.


