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Abstract

Purpose – The purpose of this paper is to discuss the natural convection flow of an incompressible
third grade fluid between two parallel plates. The basic equations governing the flow are reduced to a
nonlinear ordinary differential equation.

Design/methodology/approach – The resulting nonlinear ordinary differential equation is solved
by multi-step differential transform method (MDTM).

Findings – The obtained solutions in comparison with the numerical solutions (fourth-order
Runge-Kutta) admit a remarkable accuracy.

Originality/value – The analysis illustrates the validity and the great potential of the MDTM in
solving nonlinear differential equations.

Keywords Differential equations, Convection, Fluids, Flow, Natural convection, Non-Newtonian fluid,
Multi-step differential transform method
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Nomenclature
E ¼ Eckert number
i ¼ unit vector in the direction of x
Pr ¼ Prandtl number
T ¼ absolute temperature
U 0 ¼ reference velocity
vðhÞ ¼ velocity function
a ¼ thermal diffusivity

b ¼ material coefficient
d ¼ dimensionless non-Newtonian

coefficient
h ¼ similarity parameter
m ¼ coefficient of viscosity
n ¼ kinematic viscosity
uðhÞ ¼ temperature function
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1. Introduction
The study of nonlinear ordinary/partial differential equations is quite popular area of
research now days. Such equations arise in various physical problems of engineering.
The importance of obtaining the exact or approximate solutions of nonlinear partial
differential equations in physics and mathematics is still challenging that needs new
methods for exact or approximate solutions. All of nonlinear equations do not have a
precise analytic solution and hence numerical methods have largely been used to handle
such equations. There are also some analytical techniques for nonlinear equations. Some
of the classic analytical methods are the Lyapunov’s artificial small parameter method
(Lyapunov, 1990), perturbation techniques (He, 1999) and d-expansion method
(Karmishin et al., 1990). In the recent years, many authors mainly had paid attention
to study solutions of nonlinear partial differential equations by using various methods.
Among these are the Adomian decomposition method (ADM), tanh method, homotopy
perturbation method (HPM), sinh-cosh method, homotopy analysis method (HAM)
(Rashidi and Dinarvand, 2009; Rashidi et al., 2011; Ellahi, 2009), differential transform
method (DTM) (Rashidi and Keimanesh, 2010; Rashidi et al., 2010; Rashidi, 2009) and
variational iteration method (VIM) (He, 1997; Rashidi and Shahmohamadi, 2009).

The motivation of this paper is therefore to use the reliable algorithm of the DTM,
namely MDTM (Odibat et al., 2010) to construct analytical approximate solutions of the
natural convection flow of a third grade between two parallel plates.

Recently considerable attention has been directed towards the study of non-Newtonian
fluids because of their practical importance in engineering and industry. The classical
Navier-Stokes equations have been proved inadequate to describe and capture the
characteristics of complex rheological fluids as well as polymer solutions (Dunn and
Rajagopal, 1995). These kinds of fluids are generally known as non-Newtonian fluids.
Most of the biological and industrial fluids are non-Newtonian in nature. Few examples of
such fluids are blood at low shear rate, tomato ketchup, honey, mud, plastics and polymer
solutions. The inadequacy of the classical theories to describe these complex fluids has
led to the development of different new models to study non-Newtonian fluids. There
are different models which have been proposed to describe the non-Newtonian flow
behavior. Among these, the fluids of differential type (Dunn and Rajagopal, 1995;
Truesdell and Noll, 2004) have received considerable attention. The third grade fluid
considered in this study is a subclass of differential type fluids which can describe
the shear thinning/shear thickening effects. Ellahi and Riaz (2010) analyzed the
influence of magnetohydrodynamics (MHD) on the pipe flow of a third-grade fluid with
variable viscosity. The influence of variable viscosity and viscous dissipation on the
non-Newtonian flow in a porous medium employing modified Darcy’s law is discussed by
Hayat et al. (2007) and Ellahi and Afzal (2009). Okoya considered the flow of a third grade
fluid (with exponential viscosity) between the parallel plates under the action of externally
imposed pressure gradient (Okoya, 2011). Yürüsoy et al. (2008) considered the steady-state
flow of a third grade fluid between concentric circular cylinders. They examined entropy
generation due to fluid friction and heat transfer in the annular pipe. Pakdemirli and
Yilbas (2006) considered flow of third grade fluid in a pipe. Ayub et al. (2003) considered
the flow of third grade fluid past a porous plate. The thermal transition in reactive flow of a
third-grade fluid with viscous heating and chemical reaction between two horizontal flat
plates is examined by Okoya (2008). Akyildiz et al. 2004 developed exact solutions for
nonlinear differential equations of third grade fluid. Thermal stability of reactive third
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grade fluid in a cylindrical pipe is analyzed by Makinde (2007). Sahoo (2009) examined
Hiemenz flow of a third grade fluid in the presence of heat transfer. Fundamental Stokes
first problem for third grade fluid in a porous space is studied by Hayat et al. (2008). The
authors introduced the modified Darcy’s law for third grade fluid in this work. Abelman
et al. (2008) discussed the rotating flow of third grade fluid in a porous space. Exact
solution for flow of third grade fluid over a porous wall is established by Hayat et al. (2003).

2. Basic concepts of the DTM
Transformation of the kth derivative of a function in one variable is as follows
(Abdel-Halim Hassan, 2008):

FðkÞ ¼
1

k!

d kf ðtÞ

dt k

� �
t¼t0

; ð1Þ

and the inverse transformation is defined by:

f ðtÞ ¼
X1
k¼0

FðkÞðt 2 t0Þ
k: ð2Þ

From equations (1) and (2), we get:

f ðtÞ ¼
X1
k¼0

ðt 2 t0Þ
k

k!

d kf ðtÞ

dt k

�����
t¼t0

; ð3Þ

which implies that the concept of DTM is resulting from Taylor series expansion,
but the method does not calculate the derivatives representatively. However,
relative derivatives are calculated by an iterative method which is described by
the transformed equations of the original function. For implementation purposes, the
function f(t) is expressed by a finite series and equation (2) can be written as:

f ðtÞ ø
Xi
k¼0

FðkÞðt 2 t0Þ
k; ð4Þ

where F(k) is the differential transform of f(t).
The following theorems that can be deduced from equations (21) and (22) are given

below:

Theorem 1. If f ðtÞ ¼ uðtÞ^ vðtÞ, then FðkÞ ¼ U ðkÞ^ V ðkÞ.

Theorem 2. If f ðtÞ ¼ luðtÞ, then FðkÞ ¼ lU ðkÞ, where l is a constant.

Theorem 3. If f ðtÞ ¼ d nuðtÞ=dt n, then FðkÞ ¼ ððkþ nÞ!=k!ÞU ðkþ nÞ.

Theorem 4. If f ðtÞ ¼ uðtÞvðtÞ, then FðkÞ ¼
Pk

r¼0U ðrÞV ðk2 rÞ.

Theorem 5. If f ðtÞ ¼ ðduðtÞ=dtÞðduðtÞ=dtÞ, then
FðkÞ ¼

Pk
r¼0ðr þ 1Þðk2 r þ 1ÞU ðr þ 1ÞU ðk2 r þ 1Þ.

Theorem 6. If f ðtÞ ¼ ðduðtÞ=dtÞðdvðtÞ=dtÞ, then
FðkÞ ¼

Pk
r¼0ðr þ 1Þðk2 r þ 1ÞU ðr þ 1ÞV ðk2 r þ 1Þ.
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Theorem 7. If f ðtÞ ¼ uðtÞðdvðtÞ=dtÞ, then
FðkÞ ¼

Pk
r¼0ðk2 r þ 1ÞU ðrÞV ðk2 r þ 1Þ.

3. Basic concepts of the MDTM
When the DTM is used for solving differential equations with the boundary conditions
at infinity or problems that have highly nonlinear behavior, the obtained results were
incorrect (when the boundary-layer variable goes to infinity, the obtained series
solutions are divergent). Besides that, power series are not useful for large values of
independent variable.

To overcome the shortcoming, the MDTM is presented in this section that has
developed for the analytical solution of differential equations. For this purpose, the
following nonlinear initial value problem is considered:

uðt; f ; f 0; . . . ; f ð pÞÞ ¼ 0; ð5Þ

subject to the initial conditions f ðkÞð0Þ ¼ ck; for k ¼ 0; 1; . . . ; p2 1.
Let [0, T ] be the interval over which we want to find the solution of the initial value

problem (5). In actual applications of the DTM, the approximate solution of the initial
value problem (5) can be expressed by the finite series:

f ðtÞ ¼
XN
n¼0

anðt 2 t0Þ
n t [ ½0;T�: ð6Þ

The multi-step approach introduces a new idea for constructing the approximate
solution. Assume that the interval [0, T ] is divided into M subintervals
½tm21; tm�;m ¼ 1; 2; . . . ;M of equal step size h ¼ T=M by using the nodes
tm ¼ mh. The main idea of the MDTM is as follows. First, we apply the DTM to
equation (5) over the interval [0, t1] and obtain the following approximate solution:

f 1ðtÞ ¼
XK
n¼0

a1nðt 2 t0Þ
n t [ ½0; t1�; ð7Þ

with the initial conditions f ðkÞ1 ð0Þ ¼ ck. For m $ 2 and at each subinterval ½tm21; tm�

we will use the initial conditions f ðkÞm ðtm21Þ ¼ f ðkÞm21ðtm21Þ and apply the DTM to

equation (5) over the interval ½tm21; tm�, where t0 in equation (1) is replaced by tm21.
The process is repeated and generates a sequence of approximate solutions
f mðtÞ;m ¼ 1; 2; . . . ;M , for the solution f ðtÞ:

f mðtÞ ¼
XK
n¼0

amnðt 2 tm21Þ
n; t [ ½tm; tmþ1�; ð8Þ

where N ¼ K ·M . In fact, the MDTM assumes the following solution:

f ðtÞ ¼

f 1ðtÞ; t [ ½0; t1�

f 2ðtÞ; t [ ½t1; t2�

..

.

f M ðtÞ; t [ ½tM21; tM �:

8>>>>>><
>>>>>>:

ð9Þ
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The new algorithm, MDTM, is simple for computational performance for all values of
h. It is easily observed that h ¼ T, if the step size then the MDTM reduces to the
classical DTM. As we will see in the next section, the main advantage of the new
algorithm is that the obtained series solution converges for wide time regions and can
approximate non-chaotic or chaotic solutions.

4. Mathematical formulation
The structure of the fully developed steady-state flow of an incompressible liquid of
grade 3 confined between two parallel plates is studied in this paper. The velocity for
unidirectional flow is:

~V ¼ uð yÞki; ð10Þ

in which ~V is the velocity, u andki are velocity and unit vector parallel to the x-axis. The
equations motion and energy give (Rajagopal and Na, 1985):

d 2u

dy 2
mþ 6b

du

dy

� �2
 !

þ
T 2 T0

bT0
¼ 0; ð11Þ

k
d 2T

dy 2
þ

du

dy

� �2

mþ 2b
du

dy

� �2
 !

¼ 0; ð12Þ

where continuity equations is identically satisfied and the consumption of the
combustible material and the effect of radiant heating are neglected. The dimensionless
variables are defined as:

h ¼
y

y0
; v ¼

u

U 0
; b ¼

RT0

E
; E ¼

U 2
0

cðT1 2 T2Þ
; Pr ¼

n

a
;

u ¼
T 2 T0

bT0
; d ¼

bU 2
0

my2
0

;

ð13Þ

where c is the specific heat of the fluid. The non-dimensional form of equations (11) and
(12) are:

d 2v

dh 2
1 þ 6d

dv

dh

� �2
 !

þ u ¼ 0; ð14Þ

d 2u

dh 2
þ E ·Pr

dv

dh

� �2

1 þ 2d
dv

dh

� �2
 !

¼ 0: ð15Þ

With the following boundary conditions:

vð21Þ ¼ 0; uð21Þ ¼
1

2
; ð16Þ
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vðþ1Þ ¼ 0; uðþ1Þ ¼ 2
1

2
: ð17Þ

The physical model of the problem is shown in Figure 1. It consists of two flat plates that
can be positioned vertically. A non-Newtonian fluid is between two flat plates distant 2b
apart. The walls at x ¼ þb and x ¼ 2b are kept at constant temperaturesT2 and T1,
respectively, where T1 . T2. This difference in temperature causes the fluid near the
wall at x ¼ 2b to rise and the fluid near the wall at x ¼ þb to fall.

5. Analytical solutions by MDTM
Employing the MDTM to equations (11) and (12) gives the following recursive relation
in each sub-domain ðti; tiþ1Þ; i ¼ 0; 1; . . . ;N 2 1:

ðkþ 1Þðkþ 2ÞV ðkþ 2Þ þ 6d
Xk
r2¼0

Xr2

r1¼0

V ðr1 þ 1ÞV ðr2 2 r1 þ 1ÞV ðk2 r2 þ 2Þ

£ ðr1 þ 1Þðr2 2 r1 þ 1Þðk2 r2 þ 1Þðk2 r2 þ 2Þ þQðkÞ;

ð18Þ

Figure 1.
Schematic diagram

of the problem under
consideration

x
o

g

T1 T2

y

2b 
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ðkþ 1Þðkþ 2ÞQðkþ 2Þ þ E ·Pr
Xk
r¼0

V ðr þ 1ÞV ðk2 r þ 1Þðr þ 1Þðk2 r þ 1Þ

þ 2dE ·Pr
Xk
r3¼0

Xr3

r2¼0

Xr2

r1¼0

V ðr1 þ 1ÞV ðr2 2 r1 þ 1ÞV ðr3 2 r2 þ 1ÞV ðk2 r3 þ 1Þ

£ ðr1 þ 1Þðr2 2 r1 þ 1Þðr3 2 r2 þ 1Þðk2 r3 þ 1Þ;

ð19Þ

where V ðkÞ and QðkÞ are the differential transforms of vðhÞ and uðhÞ.
The differential transform of the boundary conditions (16) and (17) are

as follows:

V ð0Þ ¼ 0; Qð0Þ ¼
1

2
; ð20Þ

Xi
k¼0

V ðkÞ2k ¼ 0;
Xi
k¼0

QðkÞ2k ¼ 2
1

2
; ð21Þ

We can consider the following boundary conditions (equations (16) and (17)):

vð21Þ ¼ 0; uð21Þ ¼
1

2
; ð22Þ

v0ð21Þ ¼ a; u0ð21Þ ¼ b: ð23Þ

The differential transform of the above conditions are given by:

V ð0Þ ¼ 0; Qð0Þ ¼
1

2
; ð24Þ

V ð1Þ ¼ a; Qð1Þ ¼ b: ð25Þ

Moreover, substituting equations (24) and (25) into equations (18) and (19) and by
recursive method we can calculating other values ofV ðkÞ and QðkÞ:Hence, substituting
all V ðkÞ and QðkÞ, into equation (4), we have series solutions. By using boundary
condition vð1Þ ¼ 0 and uð1Þ ¼ 2ð1=2Þ, we can obtain a;b.

For analytical solution, the convergence analysis is performed and in equation (4),
the i value is selected equal to 20. We set interval equal to 0.1.

6. Results and discussion
Our main concern is to determine solutions of velocity and temperature profiles,
vðhÞ; uðhÞ; by the DTM, MDTM and numerical method using the fourth-order
Runge-Kutta. These quantities describe the flow behavior.

Figures 1 and 2 show the accuracy of the MDTM solution in comparison to the DTM
and numerical solution when Pr ¼ 1; d ¼ 1 and various values of E, for vðhÞ and uðhÞ,
respectively. It is observed that vðhÞ and uðhÞ, are increased when Eckert number
E, increases. The effects of Prandtl number on vðhÞ and uðhÞ are shown in Figures 3
and 4. It is clear that as Prandtl number increases, the vðhÞ and uðhÞ increase.
Variation of vðhÞ and uðhÞ, with respect to d is presented in Figures 5 and 6.

HFF
23,3

442



Figure 2.
Variation of velocity

profile vðhÞ with
respect to E;

when Pr ¼ 1 and d ¼ 1
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Figure 3.
Variation of temperature

profile uðhÞ with
respect to E;

when Pr ¼ 1 and d ¼ 1
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Figure 4.
Variation of velocity
profile vðhÞ with
respect to Pr;
when Pr ¼ 1 and d ¼ 1
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Figure 5.
Variation of temperature
profile uðhÞ with
respect to Pr;
when Pr ¼ 1 and d ¼ 1
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It is observed that increasing parameter d causes a decrease in vðhÞ but it has not
significant effect on uðhÞ.

In order to verify the efficiency of the proposed method in comparison with the
DTM and numerical solution, a comparison is presented in Tables I and II for different
values of parameter d.

7. Conclusion
In the present study, a reliable algorithm based on the DTM is presented to solve some
nonlinear equations. The present method reduces the computational difficulties of the
other methods (same as the HAM, VIM, ADM and HPM).

The results for vðhÞ and uðhÞ; in Tables I and II illustrated the validity and
accuracy of this procedure. Note that the MDTM is easier to calculate than the
other methods because in the MDTM we have an iterative procedure which does
not need to solve any differential or integral equations. In the other methods we
must in each iterate solve differential equations or integrate the equations
(Figure 7).

Figure 6.
Variation of velocity

profile vðhÞ with
respect to d; when
E ¼ 1 and Pr ¼ 1
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Yürüsoy, M., Bayrakçeken, H., Kapucu, M. and Aksoy, F. (2008), “Entropy analysis for third
grade fluid flow with Vogel model viscosity in annular pipe”, International Journal of
Non-Linear Mechanics, Vol. 43, pp. 588-99.

Corresponding author
M.M. Rashidi can be contacted at: mm.rashidi@usherbrooke.ca

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

HFF
23,3

450

View publication statsView publication stats

https://www.researchgate.net/publication/235326906

