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Outline 
• An Introduction to Well Performance Analysis  

– Flow regimes, 
– Basic well model 
– Simplifying assumptions 
– Diffusivity equation  for slightly compressible oil,  
– Solution to diffusivity equation, 

• Constant rate solution  
• Constant pressure solution 

–  Application of the Solution (Type curves) 
–  Treatment of the Diffusivity Equation for Gas reservoirs  
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 Development of Hydraulic Diffusivity Equation 

1-D, Radial, Single Phase, Slightly Compressible 
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• Physical model 

• Simplifying assumptions 

• Mathematical model 

– Choosing an appropriate element 

– Governing equation 

– Mass balance 

– Momentum balance (Darcy’s law) 

– Equation of state  

– Initial and Boundary conditions 

• Infinite acting 

– Constant rate production  

– Constant pressure production 

• Finite acting 

– Constant rate production  

– Constant pressure production 

– Solutions 

• Laplace space solutions 

• Time domain solutions 

• Simplified solutions 

• Applications (Drawdown (single rate & multi rate), Reservoir limit test,  Build up, 

Superposition (time & space), …),  
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Reservoir Engineering Model 
●Works 95+ percent of the time... 
●Why?  Pressure and volume 

averaging of reservoir properties. 
●When does it not work?  High 

contrast in reservoir properties. 

Actual Reservoir Model 
●Complex geology. 
●Complex fluid behavior. 
●Poor lateral (and vertical) continuity. 

Physical Model 
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rw 

Simplifying Assumptions 
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Mathematical Model-Governing Equation 
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•Mass balance 
 
 
 

•Momentum balance (Darcy’s law) 
 
 
 
 
 

•Equation of state  
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Hydraulic Diffusivity Equation 
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Hydraulic diffusivity equation determines the velocity at which 
pressure waves propagate in the reservoir. The more the 
permeability the faster the pressure wave will propagate. 
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Pressure Distribution During  
Unsteady State Flow 
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Pressure Distribution During  
Pseudo Steady State Flow 
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Mathematical Model-Governing Equation 
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Well production Flow 
regime 

 

Inner Boundary 
Condition 

Outer Boundary 
conditions 

Constant rate  Finite acting 
(Bounded) 
 

 
 

Constant pressure  Finite acting 
(Bounded) 
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reservoir, inner, and outer boundary conditions 



13 

The advantages of using a dimensionless physical quantity: 
 The results are suitable for different unit systems.  
 The number of parameters and variables are reduced.  
 The problem is simplified. 
 The nature of physical problem is better shown. 

Dimensionless Variables 
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Different Systems of Units 



Dimensionless Variables 
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Dimensionless Hydraulic Diffusivity 

Equation 
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Pressure Distribution in a Closed Circular 
Reservoir - Constant Rate Production 
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van Everdingen- Hurst Constant Terminal Rate Solution  

Bounded Cylindrical Reservoir  
(exact solution) 

 

1. Infinite cylindrical reservoir with line-source well 

2. Bounded cylindrical reservoir, pseudo steady-state flow  

Approximate Solutions 

   
 

    









1
2

1

2

1

2

2

1

2

2

275.0
2

n neDnn

eDn

t

eD

eD

D
DwD

JrJ

rJe
rn

r

t
tp

Dn










29 

Constant rate 

solution  

Infinite-acting reservoir 

 

 

Boundary dominated flow- approximate late time  
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Reservoir-Limits Test 

(Estimation of Reservoir Pore Volume) 
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Deliverability Equation & 

 Well Productivity Index 
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Boundary Dominated Flow 

 Transient flow is independent of reservoir size, all reservoirs would follow 
the same curve at early time (transient flow) and would only deviate at late 
times, when the reservoir boundary is felt. 

  The higher the reservoir size, the longer the transient flow 
 The late-time behavior for all reservoir sizes is an exponential decline. 35 



Depletion above the Bubble-point Pressure 

Constant Pressure Solution 
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Constant rate  

solution  

Infinite-acting reservoir 

 

 

Bounded reservoir 

 

 

Constant pressure 

solution  

Infinite-acting reservoir 

 

Bounded reservoir 
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Modified Bessel Differential Equation Bessel Differential Equation 
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Consideration of Complexibilities 
 in the Basic Well Test Model 

 Wellbore storage 

 Early time distorted data 

 Altered permeability in near the wellbore zone 

 Skin factor 

 Limited flow entry 

 Pseudo skin factor 

 Non-Darcy flow 

 Rate-dependent skin factor 

 Multiple well 

 Super-position in space 

 Variable rate 

 Superposition in time 

 Compressible flow 

 Single phase pseudo pressure 

 Two phase flow 

 Multi-phase pseudo pressure 
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Components of Well Test Models 

Well 

Reservoir 

Boundaries 

Direction (Vertical, Horizontal) 

Storage (Constant, Changing) 

Completion (Damaged, Fractured and Acidized) 

Homogeneous  

Heterogeneous 

Composite 

Multilayer 

Dual porosity 

Flow boundaries (No flow, Constant pressure, infinite) 

Geometrical boundaries (Circular, Rectangular) 
40 



Dimensionless Variables 
Radial Flow With WBS And Skin 
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Type Curve Matching Principle 

A type curve is a graphical representation of the theoretical solutions to flow 
equations. 

In other words, a dimensionless curve is different from a dimensional curve only 
by a constant on the log–log paper. 



Gringarten Type Curve 

 Constant rate production 

 Vertical well 

 Infinite-acting homogeneous reservoir 

 Single-phase, slightly compressible liquid 

 Skin factor can be modeled with an apparent radius 

 Constant wellbore storage coefficient 
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Derivative Analysis 

 Derivative: the slope of the semi-log plot of pressure versus time. 

 Perhaps one of the major advantages in using the pressure 
derivative in conjunction with pressure is the identification of the 
flow regime. 

– wellbore storage, 

–  skin,  

– closed outer boundary, 

–  vertically fractured well and others.  
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Derivative Type Curve 
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Pressure And Derivative Type Curves 
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Time Regions On The Type Curve 
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Estimating Skin Factor 
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Type Curve Matching 

• Plot field data on log-log scale 

 

• Align horizontal part of field data and type curve derivative 

 

• Align unit slope part of field data and type curve 

 

• Select value of CDe2s that best matches field data 



TCMATCH.WTD (Field Data)
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TCMATCH.WTD (Drawdown type curve, Radial equivalent time)

Radial flow, Single porosity, Infinite-acting: Varying CDe2s
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TCMATCH.WTD (Drawdown type curve, Radial equivalent time)

Radial flow, Single porosity, Infinite-acting: Varying CDe2s
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Interpreting Type Curve Match 

 Calculate k from the pressure match point ratio p/pD 

 Calculate CD from the time match point ratio teq/tD 

 Calculate s from the matching stem value CDe2s 



The Diagnostic Plot 

1. Identify time regions. 

2. Identify flow regimes. 

3. List factors that affect pressure response in early time. 

4. List boundaries that affect pressure response in late time. 



Time Regions on the Diagnostic Plot 
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Volumetric Behavior 

VV btmp General Form 

Wellbore Storage 

Pseudosteady-State Flow 
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Volumetric Behavior 
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Radial Flow 

  btmp  logGeneral Form 
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Linear Flow 
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Bilinear Flow 
General Form 
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Spherical Flow 

21 tmbp SSGeneral Form 
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Flow Regimes on the Diagnostic Plot 
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Assumptions are usually made for liquid flow: 

 Viscosity is independent of pressure. 

 The pressure gradient  is small and therefore is negligible. 

 The liquid compressibility is small and constant, so that the product. 
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For gas wells, compressibility (and viscosity) can not 

be considered constants at low reservoir pressure 
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reservoir pressure 

1. Gas has a non-linear inflow relationship flowing 

wellbore pressure is not proportional to well flow rate 

2. Gas properties significantly changes with pressure 
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Assuming that the gas reservoir is homogeneous and the flow follows Darcy’s 
law, the flow equation is 

Challenges To Deal with In Gas Reservoirs  

Fraim and Wattenbarger (1987) 
Pseudo-time Transformation 
(1) Variable compressibility 
(2) Variable viscosity 

Al-Hussainy  and Ramey (1966)  
Pseudo-pressure Transformation 
(1) Variable compressibility factor 
(2) Variable viscosity 





Gas Flow Governing Equations 


