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An Introduction to Well Performance Analysis

Flow regimes,

Basic well model

Simplifying assumptions

Diffusivity equation for slightly compressible oil,
Solution to diffusivity equation,

* Constant rate solution

* Constant pressure solution

Application of the Solution (Type curves)

Treatment of the Diffusivity Equation for Gas reservoirs



Development of Hydraulic Diffusivity Equation
1-D, Radial, Single Phase, Slightly Compressible

Physical model
Simplifying assumptions
Mathematical model
Choosing an appropriate element
Governing equation
—  Mass balance
—  Momentum balance (Darcy’s law)
— Equation of state
Initial and Boundary conditions
. Infinite acting
—  Constant rate production
—  Constant pressure production
. Finite acting
—  Constant rate production
—  Constant pressure production

Solutions
. Laplace space solutions
. Time domain solutions
. Simplified solutions

Applications (Drawdown (single rate & multi rate), Reservoir limit test, Build up,
Superposition (time & space), ...),



Physical Model

<€<— Reservoir Engineering Model
®\Works 95+ percent of the time...
®\Why? Pressure and volume
averaging of reservoir properties.
®\When does it not work? High
contrast in reservoir properties.

/~CORE PLUGS [
N [

{ <— Actual Reservoir Model
® Complex geology.
J ® Complex fluid behavior.

® Poor lateral (and vertical) continuity.

SHALES
(CONTINUOUS) SAND
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Simplifying Assumptions

Homogeneous

Isotropic

Ignore Gravity

Constant Temperature

Darcy's law applies

ﬁ

Single phase fluid
Radial flow

Totally penetrating vertical well ‘u‘""“ e,

. .

*
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- Constant net pay, saturation \ /
(dp/ar) - gradient in reservoir - is small

Constant wellbore storage

. Constant pressure throughout reservoir
attimet=10

Constant production rate OIL/WATER
. Compressibility is small and constant

Closed circular reservoir
-, . . . Viscosity is constant
Model complexities will be introduced

as necessary . Laminar flow



Mathematical Model-Governing Equation

*Mass balance
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Hydraulic Diffusivity Equation
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Hydraulic diffusivity equation determines the velocity at which

pressure waves propagate

in the reservoir.

The more the

permeability the faster the pressure wave will propagate.



Travel of an impulse to illustrate

RADIUS of INVESTIGATION
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Radius of Investigation

How far into the reservoir have we
investigated

Dimensionless curves deviate from radial :
flow (semi-log straight line) attp = 1/4 rep2 attime=t r,< f,<r;:

Finv = 0.0325 {(kt)/(dpc)} AP

Independent of rate

Approximate

Total reservoir affected even at small times : T :

Practical concepts

NOT Theoretical

Used to calculate approximate distance to
boundary /ff

S.Gearami




Pressure Distribution During
Unsteady State Flow
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P = const Downward




Pressure Distribution During
Pseudo Steady State Flow

A

Shape of pressure
profile is unchanged

Downward
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Mathematical Model-Governing Equation

A reservoir model is the superposition of
reservoir, inner, and outer boundary conditions @
- - — | — |n
Ly of . op)|_euc op | aw | —
P —_— E wf -—
r{or \ or k ot/ — ¢ *
- — :,..-—-""' r
Initial Condition: p=Dp t— r> Fig. 9.1 Radial flow towards a well.
Well production Flow Inner Boundary Outer Boundary
regime Condition conditions
Constant rate Finite acting
(Bounded) = =
8I’ 27rr hk 8r e

Constant pressure Finite acting op
(Bounded) (p)rw =p., o =0



Dimensionless Variables

The advantages of using a dimensionless physical quantity:

1 The results are suitable for different unit systems.

1 The number of parameters and variables are reduced.

1 The problem is simplified.

1 The nature of physical problem is better shown.
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Different Systems of Units

Unit system Basic SI Legal SI Imperial field unit
Length r,h, L m m ft
Time f S h h
Pressure p Pa MPa psi
Permeability K m’ mD md
Oil Rate A m>/s m>/d STB/D
Gas Rate 4 m’/s 10*m?/d Msct/D
Viscosity I Pa-s mPa-s(= cP) cP
Conversion a, 12w 1.842 141.2
factor a, | 0.0036 2.637 x 107
Q. 12 121 0.8936
ap, l/m 3.683 x 10* 50312
r r o Kt o Kt
Ih=— Fp = - T lpa=— =7
'y Iy ouCr, ouC.A
Po = (P = P) Pup = (P~ D) Cp=—i
D~ i wD i wi D 2
{Iptu {Ipq}“lB q}C[hnl




Dimensionless Variables
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Dimensionless Hydraulic Diffusivity

Equation
1| o p | quc, op
rpor\ or) k ot
_ khop )
P> = 1417 qBy * (1-2)
() = ”-z“féf‘d'f , and (1-3)
rp = rir, (1-4)
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Pressure Distribution in a Closed Circular
Reservoir - Constant Rate Production

l@(}_ap):q&ﬂct dp (4.1)
ror\ or K ot
p(r.0)=p, (4.2)
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In dimensionless variables

| a( apn] ap,
J"D =

ror\ P ar, ) o,
pD(rD,O) =0
d
(rn p”] =—1
ar;, .
apD _0
ar;, ,

The dimensionless variables are defined as follows

_ ZJIKh(pi — pwf)
qub

Po

ouC,r,

(4.5)

(4.6)

4.7)

(4.8)
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Laplace transformation of Eq. (4.5) through Eq. (4.8) yields

d’ p 1 dp -
Po  ~ZPo _s5p. (4.9)
dr, ry dr,
dp,| _ 1 (4.10)
dr, s
=1

pe

Pp -0 (4.11)
dr,

In the Laplace space, the solution of Eq. (4.9) is given as follows

Po = A, (s )+ B.K, (Vs ) (4.12)

19



Po = A, (Vs )+ BK, (r,s) (4.12)

According to the inner boundary condition Eq. (4.10), we have

(4.13)

A (4F) - Bk (7)==

According to the outer boundary condition Eq. (4.11), we have

Ayl (reD\/;)_ B,K, (":-,D\/E) =0

(4.14)
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According to Eq. (4.13) and Eq. (4.14), we have

1 Kl(nnﬁ)
N Y
Kl(\/;)_;,(\/;)?((;f))
il
" ]

(4.15)

(4.16)
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The definition of pressure derivative is as follows

-~ _dpy
_ (4.18)
pD df

D

The following expression is obtained through the Laplace transformation of
Eq. (4.18)

(4.19)
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Figure 4.1 Pressure distribution in a closed circular reservoir: constant rate production
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Before the late period, Eq. (4.17) can be simplified as

-1 Ko(\/;)
Pp - SKI(\/;)

In the early period, when f; < 0.01, that is, the big s period, we have

K, (s5)= ’% e

Substituting the asymptotic formula Eq. (4.21) into Eq. (4.20), we have

- 1

e

According to the mathematics handbook, there is

(4.20)

(4.21)

(4.22)

(4.23)



Performing the Laplace inversion transformation of Eq. (4.22), we have
Pp =241, /T (4.24)

Eq. (4.24) reflects the linear flow characteristic in the early period.
In the big time period, f,/r; >100, we have

Kﬂ(s)z—(ln%er) (4.25)

K, (s) == (4.26)

Substituting Eq. (4.25) and Eq. (4.26) into Eq. (4.20), we have

Js
— ln—2 +7v | o
_ ns —1n
Pp = =— _7 (4.27)

Ky 25 5
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According to the mathematics handbook, there is

L' I:ln_s} =—Int, -y (4.28)

S

Performing the Laplace inversion transformation of Eq. (4.27), we have

Py :%(lﬂfn +]/)—(}f—1n2):%ln adt

7 (4.29)

Eq. (4.29) reflects the radial flow characteristic in the big time period.
Van Everdingen and Hurst (1949) presented the analytical solution of Eq. (4.17) in
Euclidean space through Laplace transformation

2 2 4 4 2
(r rDJ_r;D Inr,  3ry, —4r, Inr, =215, 1
D

4 -1 A(r2 — 1)
- ot le (ZH rED ) [‘Il (Z'u )yﬂ (Zn Ir[.‘l) - JD (an]] )Yl (Zn )]

p—r 2 [ (2, r) = i (2,) ]

(4.30)




where Z, is the root of the following characteristic equation
K(ZJI )Jl(’zn};]})_‘j](zu )}]] (ZHFED) = 0 (431)

Under the pseudo-steady state, Eq. (4.30) can be simplified as

2t 3
Po =~ fl +Inr, 7 (4.32)

eD
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van Everdingen- Hurst Constant Terminal Rate Solution
Bounded Cylindrical Reservoir
(exact solution)

—aﬁ t

2t SRR A
t )=="DB 4y —0.75+2 [ SNEET |
Pollo) =2+ 0lh0)-0 75423 Cariar oy ]

Approximate Solutions

1. Infinite cylindrical reservoir with line-source well

2. Bounded cylindrical reservoir, pseudo steady-state flow

28
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Solutions- Laplace Domain (Sabet, 1991).

Constant rate

solution

Infinite-acting reservoir

P,o(ts )= %[ﬁn(tD )+0.80908]

Boundary dominated flow- approximate late time

oo (to )= 22+ (1, )—0.75

2
reD

29



Van Everdingen and Hurst (1949) pointed out that according to the superposition
principle, the relationship between the pressure solution at a constant production rate
and the production rate solution under constant pressure turned out to be

- - |
Pp(8)qy(s)= = (4.33)

Substituting Eq. (4.17) into Eq. (4.33), we have

K (Vs) 1(Vs) K, (rps)
~ L(Ns) 1 (Ns) 1 (ros)

qdp =

(4.34)

It 1s the production rate equation Eq. (3.22) under constant BHFP.

30



Plotting gp (the production solution under constant BHFP) and 1/pp, (the reciprocal
of pp, which is the pressure solution at a constant rate) in the same coordinate system,
as shown in Figure 4.2. The figure shows that in the transient flow period, the two

curves are almost overlapped and dispersed in the boundary-dominated flow period.
In this period, the gp~fp curve follows a exponential decline trend while the 1/(pp—tp)
curve exhibits a harmonic decline trend.

r.y- 1000

£
— 1ip,

Constant rate

2

Constant BHFP

107
107 10° 10° 10° 10° 10° .



Reservoir-Limits Test
(Estimation of Reservoir Pore Volume)

0. = Ioi_141.2qu 0'00052724kt+£n | _g7s
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Deliverability Equation &
Well Productivity Index

_ 141.2qBu| (r )
— P = /n| = |-0.75
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Dimensionless transient pressure response of a
radial well in infinite reservoir

D
]

| . i = .
Punltp ==+ tnlry, )-0.75+ EE ——

Fars m=] Ly

14 "exact” solution

_ self-similar solution

o

- [I:nga[ithmic: appreximation

dimensionless pressure, pp
L]

le-2 1e-1 1e+0 1e+1 lesd le+3d
dimensionless time, tg

[J"mu(‘rn) v é[r”[!.& ]-|-{}_R{}‘~}1}H] ]




Boundary Dominated Flow

Same Transient for all refrw's

Different refrw 's

 Transient flow is independent of reservoir size, all reservoirs would follow
the same curve at early time (transient flow) and would only deviate at late
times, when the reservoir boundary is felt.

d The higher the reservoir size, the longer the transient flow

1 The late-time behavior for all reservoir sizes is an exponential decline.




Depletion above the Bubble-point Pressure
Constant Pressure Solution

For o, >(th )

It may be used for reservoir limit test

36



Solutions- Laplace Domain (Sabet, 1991).

Infinite-acting reservoir

e KO(rD\@)
Po(S)= S\/gKl(\/g)

Constant rate

Bounded reservoir

Po(S)= [Kl(rne\/g)lo(rD ‘/§)+ |1(roe\/§)K0(rD \/§)]
O S VS [Ky (VS Moo V'S )~ Kylroo V'S 1L (VS ]

solution

Infinite-acting reservoir

q (S){J—(—))Kl /S J
Constant pressure YSKilvs

solution Bounded reservoir

) ol SRS S 5]




Bessel Differential Equation =
&y dy

7 3 :
B ——+x — +[x —-& =] =
& %t & [ ) :

vixi= ‘fljn (%) +“:2Fn (x1 g g

Properties of Bessel function

(oS )= V51, (VS

Modified Bessel Differential Equation

&y d

v v v

N —— X — —[X +n =0,
i xZ i x [ )y

yix)=ciiyix)+o &y (x)

l'|f.l')
fal) fu{-")i' Lix) Lix) L)

dr,
Ksix) Kslx)
dir KO (rD \/g): _\/gKl(rD \/g) K’fg" -‘t’gf.ri+ RJ}(IJ Y
D




Consideration of Complexibilities
in the Basic Well Test Model

d Wellbore storage
= Early time distorted data

 Altered permeability in near the wellbore zone
= Skin factor

d Limited flow entry

0 N:)n FE;E’aerli:C;/OﬂSok\iA? aeter l{itr @ﬂ _ PHG a0
* Rate-dependent skin factor rior or kot
d Multiple well o p=p. r,Sr<r,
" Super-position in space g= Const. @ r=r,
4 Variable rate =0 @ r=r,

= Superposition in time
1 Compressible flow

= Single phase pseudo pressure
O Two phase flow

= Multi-phase pseudo pressure
39
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Components of Well Test Models

Well

Reservoir

Boundaries

Direction (Vertical, Horizontal)

Storage (Constant, Changing)

Completion (Damaged, Fractured and Acidized)

Homogeneous
Heterogeneous
-« Composite

Multilayer

Dual porosity

Flow boundaries (No flow, Constant pressure, infinite)

Geometrical boundaries (Circular, Rectangular)



Dimensionless Variables
Radial Flow With WBS And Skin

o kh(p, — p) . _ 0.0002637kt
° " 141.2qBu r > st
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Type Curve Matching Principle

A type curve is a graphical representation of the theoretical solutions to flow
equations.

r kh
i ] = -&
J01 1I 1||: 1|n2 ”'31.;.2 o [141,2@8;5} P
log(pn) = log(Ap) + 1o ( ki )
kh glpp) = log(Ap S\ 141.20B,
) 141. 208
pp 10 —10 4D
[(LEIDDZGST&}
) = e
@P—'ﬂ?‘ﬁ'
1072 | | | 1 0. 0002637k
10 102 10° 104 108 log(fp) = log () + log [ > }
t Py

In other words, a dimensionless curve is different from a dimensional curve only
by a constant on the log—log paper.

~ 0.0002637k p _ 141208y ( ﬂu)
- per?[(tn /1) / Hhap h AP/ wp "



Gringarten Type Curve

O Constant rate production

d Vertical well

4 Infinite-acting homogeneous reservoir

O Single-phase, slightly compressible liquid

O Skin factor can be modeled with an apparent radius
O Constant wellbore storage coefficient



Pp

Pressure Type Curve

100 ¢

B (0, 0002951kh)t Coe2=10%0 | _—
Cp uC

720

105

0.1}

0.01
0.01 0.1 1 10 100

t5/Cp

1000

10000

100000



Derivative Analysis

 Derivative: the slope of the semi-log plot of pressure versus time.

[ Perhaps one of the major advantages in using the pressure
derivative in conjunction with pressure is the identification of the
flow regime.

— wellbore storage,

— skin,

— closed outer boundary,

— vertically fractured well and others.



Derivative Analysis: Transient Radial Flow Regime

p,—p,(t)=2p, = 162’iﬂ8°“ {IOG(W '05{

!

T j—3.23+ 0.878}
pelr,

dAp,, ~16269B, 1
dlogt kh

!

dA
log P | g log(t)+ lo 162698,
dlogt kh




Derivative Analysis: P.S.S Radial Flow Regime

" kh prcr; 3
dlogtzidt
t
dA dA
Pu__ 5 30261 t — ¢ 0.171%8,
dlogt dt gcer’

dA
log ——= | 215 Jogt)+ lo 01715,
dlogt Mmcer’



Derivative Type Curve
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Time Regions On The Type Curve

Transition

o
FEEEEE
Unit Slope Line

I \%\, .
\\\\\ \ =arly Time

Region
0or AN, e e
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Ap and its derivative Ap'
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Estimating Skin Factor

100 § , ;

High Skin

10 3
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Type Curve Matching

Plot field data on log-log scale
Align horizontal part of field data and type curve derivative
Align unit slope part of field data and type curve

Select value of Cye? that best matches field data



Pressure change, psi

TCMATCH.WTD (Field Data)
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TCMATCH.WTD (Drawdown type curve, Radial equivalent time)
Radial flow, Single porosity, Infinite-acting: Varying CDe2s
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TCMATCH.WTD (Drawdown type curve, Radial equivalent time)
Radial flow, Single porosity, Infinite-acting: Varying CDe2s
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Interpreting Type Curve Match

d Calculate k from the pressure match point ratio Ap/pp
4 Calculate C, from the time match point ratio t./t;
 Calculate s from the matching stem value C e

k

_ 141.26 B (gﬁrn )
N i Ap MP

~ 0.0002951kk

m:’"—m)
’H( d MP

0. 8936
Cp = c
I:I [ f;:};'zf i ?"&- :|

-4

. 1 h{(cﬂezs)mp}

2 Cn
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The Diagnostic Plot

|dentify time regions.

|dentify flow regimes.

List factors that affect pressure response in early time.

List boundaries that affect pressure response in late time.

Pressure change, derivative, psi

— ]

——/

/

V%

Elapsed time, hrs




Pressure change, derivative, psi

Time Regions on the Diagnostic Plot

Early-time
region

Middle-
time
region

Late-time
region

Elapsed time, hrs




Volumetric Behavior

Wellbore Storage
qBt

24C
Pseudosteady-State Flow

o= by = 2074 141268 (1) 3
g, kh

Ap=—"——

General Form ‘ e rn\/t 1 h/
Derivative ‘ | — (’BAp a(m\,t thy ) = m,t

ot




Pressure change, derivative

Volumetric Behavior

Time




Radial Flow
General Form Ap=m Iog(t)+ b

Derivative

N4

_>.4_

71N

Time



Linear Flow

12

Hydraulic Fracture Ap = 4.064qBu | kt
khL; | guc,

General Form Ap = mLtW +b,

Derivative

1]}
1]}
11}

Time




Bilinear Flow

Hydraulic Fracture General Form
Y2 1/4
p o 44ddBu 1|t Ap = thJ/4 +by,
h wks | | duck
}
[
by
== —

Time



Spherical Flow

2
qu PUC T
PPt = T | TV
_ -1/2
General Form Ap =bg —mgt
L/
@ —
71

Time




Pressure change, derivative, psi

Flow Regimes on the Diagnostic Plot

Elapsed time, hrs



Challenges To Deal with In Gas Reservoirs

;a[m”aqzﬁwgz
ot

ror\ u or

0" p (apj L10p _ ucg op
or? or r or K ot

Assumptions are usually made for liquid flow:

O Viscosity is independent of pressure.

O The pressure gradient is small and therefore is negligible.

O The liquid compressibility is small and constant, so that the product.

0°p  10p _ ucg op

or* ror kot




Challenges To Deal with In Gas Reservoirs

1. Gas has a non-linear inflow relationship flowing
wellbore pressure is not proportional to well flow rate
2. Gas properties significantly changes with pressure

compressibility

/ reservoir pressure

For gas wells, compressibility (and viscosity) can not
be considered constants at low reservoir pressure



|» Vzm_qo;;{c dm »

10(,am)_iom
rorl or n ot,
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Challenges To Deal with In Gas Reservoirs

Assuming that the gas reservoir is homogeneous and the flow follows Darcy’s

law, the flow equation is

_P
2p
m(p)= | ——=dp
Iz —

~ouC, dm

VZ
" K ot

f = J‘Juicn It :
i C
o MG,

12(,30)_1n
ror\ dr ) mnot,

9 E)_E [P
BI(Z _¢V[uZV’UJ -

Al-Hussainy and Ramey (1966)
Pseudo-pressure Transformation
(1) Variable compressibility factor
(2) Variable viscosity

-

Fraim and Wattenbarger (1987)
Pseudo-time Transformation
(1) Variable compressibility

(2) Variable viscosity

70



pd, ep
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FIGURE 2-3. VARIATION OF w AND uZ
From Watrenbarger (1967, p. 99)
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Gas Flow Governing Equations

The equations for the "pressure," "pressure-squared," and

"pseudo-pressure' treatments already presented may be combined into

one general equation of the form

25 o L 99
Ve - K ot

where ¢ and k have the following interpretations for the different

cases,
d K
pressure case P X
(¢ 1 )
pressure-squared case p? % —
(¢ v c)
pseudo-pressure case 1} k
(¢ usey)

(2-48)




