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Abstract

The purpose of this paper is to investigate the stochastic sliding mode controller
design for uncertain model of vehicle suspension. The Itô stochastic model of
quarter-car is considered applying both parametric stochastic perturbations and
mismatched uncertainty of road disturbance. To tackle with uncertainties of
model a non-semi-martingale stochastic sliding dynamic is obtained employing
a proportional-integral switching surface. By means of linear matrix inequali-
ties (LMIs) and stochastic extension of Lyapunov method, a sufficient condition
is derived to guarantee the mean-square stability of the stochastic dynamics in
the specified switching surface for all admissible mismatched uncertainties. Fur-
thermore, the synthesized sliding mode controller guarantees the reachability of
the determined sliding surface. A simulation study is performed to evaluate the
effectiveness of stochastic sliding mode control approach.
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1 INTRODUCTION

The vehicle suspension system plays a crucial role in
shaping the dynamics of the vehicle and providing an effec-
tive balance between ride and handling characteristics.
The chief objective of suspension is to isolate the chas-
sis from road roughness in addition to supporting vehicle
weight and keeping tire contact with road surface [1].
Consequently, suspension system guarantees passengers
stability and comfort by absorbing the road-induced vibra-
tions. Intrinsically, passive suspension can only perform
well in a restricted range of operation and therefore the
development of control strategies for active/semi-active
suspension system enjoys a growing attraction in recent
years [2].

Suspension model is subjected to random uncertainties,
which arise from external excitation to the system and
from the system parameters. External disturbances mainly
stem from road irregularities which are induced to system
in different channel from the control input, and there-
fore, lead to mismatched condition [3]. Thus, combining
suspension system parameters with established control
strategies, it is quite straightforward to synthesize a control
system for an active vehicle suspension.

But, in reality, there are a number of practical prob-
lems associated with these techniques. Firstly, there is the
question of defining suspension model parameters. For
a real suspension system, the detailed physical data are
often not readily available. Furthermore, vehicle design-
ers usually have access to a large database of suspension
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components. Therefore, it may be necessary to include
uncertainties in approximate model parameters [4]. Sec-
ondly, there is the problem of complexities within the
suspension system which cannot be easily modeled, such
as interactions with braking and steering systems, inaccu-
rate modulus, internal material damping and geometrical
variations, etc [5]. Finally, the damping and spring charac-
teristics of the vehicle suspension are inherently nonlinear
and are related to vertical velocity and vertical displace-
ment of the wheels (which follow vertical displacements
of the road). On the other hand, the road surface itself
has a completely stochastic nature and can be satisfacto-
rily modeled as a stationary random process [6]. Thus, it
can be concluded that these stochastic uncertainties will be
appeared in spring and damping parameters of suspension
vehicle [7,8].

There are many research works emphasize on the impor-
tance of dealing with the parametric uncertainties of sus-
pension, because of the fact that parameters may vary
considerably in vibrational systems [9,10]. To tackle with
such uncertainties, robust control [2] and adaptive con-
trol [11–13] strategies have been applied to system. Despite
the fact that, the parametric perturbations in vibrational
systems have random nature [8], in almost all these study
works parametric uncertainties are regarded as deter-
ministic bounded signals. While, considering parameters
uncertainty as norm-bounded signal implies high risk
of conservatism to system, stochastic strategy leads to
improvement of system performance.

Extending the model of systems to Itô stochastic dif-
ferential equations allows us to deal with a wide range
of parametric uncertainties in terms of Brownian motion
random process. Itô stochastic models have been one
of the most practical stochastic models in applications
like, economics, finance, flight control, vibrational sys-
tems and biology [8,14,15]. There are plenty of studies
trying to tackle with stabilizing and control of Itô models
through designing an idiosyncratic control strategy. See,
for instance [16,17], for stability results, and [18–20] for
some recent control strategy.

On the other hand, sliding mode control (SMC), which
is robust to parameter variations and external distur-
bances, has found a wide range of applications in con-
trol of uncertain systems [21–24]. Due to its remark-
able features such as fast response, appropriate transient
response and order reduction, SMC has received a great
deal of attention in active suspension control. To tackle
with mismatched uncertainty, [3] considered road pro-
file as an unknown nonlinear function and proposed a
class of proportional-integral SMC for active suspension.
[25] proposed a Fuzzy Sliding Mode Control to estimate
state variables and model uncertainties. In order to reduce
the acceleration of the sprung mass, a novel disturbance

observer based SMC is introduced in [26]. Regardless of
carrying out SMC design for vehicle suspension, it can be
figured out that parametric stochastic perturbations in sus-
pension system characteristics have not fully taken into
account.

The objective of this paper is to improve the ride
comfort of passengers using active suspension. Thus, a
new Itô-based SMC control scheme is presented, where
the combination of Itô stochastic equations of model
and robust control technique is utilized to improve the
performance of active suspension subject to simultane-
ous mismatched uncertainty and multiplicative pertur-
bations. The main contributions of this paper can be
summarized as follows: (i) constructing an Itô uncertain
model of vehicle by considering parametric uncertain-
ties as three independent identically distributed Brownian
motion stochastic processes. (ii) Developing an Itô process
as the sliding surface which enables us to obtain sufficient
stability conditions at sliding mode. Applying stochastic
extension of Lyapunov stability the asymptotic stability of
the closed-loop dynamics on the sliding hyper-surface is
given in terms of LMIs. Furthermore, utilizing infinites-
imal operator and Itô lemma, the reachability of the
sliding hyper-surface is guaranteed almost surely. (iii)
Implementation of proposed Itô-based sliding mode
controller to improve suspension ride comfort in presence
of uncertainties. Inherently, proposed stochastic sliding
mode controller can cope with both parametric perturba-
tions and mismatched uncertainty.

The reminder of this paper is organized as follows.
The Itô stochastic model of vehicle suspension system is
elicited in Section 2. The problem of stochastic sliding
mode controller is formulated in Section 3 and the stability
of sliding dynamics and closed loop system is investigated
in this section. In order to investigate the effectiveness of
stochastic sliding mode method, a numerical simulation is
performed in Section 4 and some concluding remarks are
given in Section 5.

Notation. Φ(Ω,F,P) is a probability space with Ω the
sample space, F, the sigma-algebra of subsets of the sam-
ple space, and P, the probability measure. E(.) Denotes the
expectation operator with respect to probability measure P.
For a real symmetric matrix, M > 0 means that M is pos-
itive definite. 𝜆(M) Is defined as eigenvalues of matrix M
and ‖g(t)‖ represents the Euclidian norm of g(t). Infinites-
imal generator ℒ (.) is Itô differential operator which is
defined as follows:

ℒ (.) = 𝜕(.)
𝜕(x)

𝑓 (x, t) + 1
2

tr
[

g(x, t)gT(x, t) 𝜕
2(.)

𝜕(x)2

]
, (1)

where the Itô stochastic model is as follows:{
dX⃗ = 𝑓 (X(t),u(t), t)dt + g(X(t),u(t), t)dw
X⃗(0) = X⃗0

(2)
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FIGURE 1 Quarter-car model

2 SYSTEM MODEL

To study the vibrational behavior of vehicle, a quadratic
car model consists of rigid bodies and dynamic elements
of spring and damping is used as shown in Figure 1. Here,
we extend this well-known model to Itô stochastic model
of vehicle by considering the parametric stochastic pertur-
bations. By applying Newton's laws to this model, dynam-
ics of system can be described by following differential
equations:

ẍc =
1

ms

[
ks(xw − xc) + cs(

.xw − .xc) + Ua
]

ẍw = 1
mu

[
ks(xc − xw) − cs(

.xw − .xc) − Ua (3)

+ ku(xr − xw)
]
,

where ms and mu are the masses of car body and wheel,
respectively, xc And xw are the displacement of car body
and wheel respectively, ks and ku are the stiffness coeffi-
cients of sprung and unsprang bodies, cs is the damper
coefficient, xr is the road disturbance and Ua is control
input which is applied to vehicle by means of an actuator.

Mechanical systems are subject to uncertainties from
external loadings such as wind loading, road roughness
and aerodynamic forces and from randomness of material
parameters such as inaccurate modulus, internal material
damping and geometrical variations due to variabilities
of manufacturing processes. By having sufficient amount
of data to form a sample space, these uncertainties can
be modeled as random variables or stochastic processes
by means of statistical inference which are applicable to
vibrational systems such as suspension model [8,27]. Here,
stochastic perturbations are applied to model (3) as three
independent identically distributed Gaussian white noises

namely v1, v2 and v3 which present parametric uncertain-
ties of suspension damping and spring characteristics[8].
Thus, the perturbed model of suspension will be as follows:

ẍc =
1

ms

[
ks(1 + v1) (xw − xc) + cs(1 + v2) (

.xw − .xc) + Ua
]

ẍw = 1
mu

[
ks(1 + v1) (xc − xw) − cs(1 + v2) (

.xw − .xc)

− Ua + ku(1 + v3) (xr − xw)
]
,

(4)
Two equations described in (4) can be rewritten in the
following state space form:

dX⃗ =
{

AX⃗ + BUa + Cr
}

dt +
{

DX⃗
}

dw1+{
EX⃗

}
dw2 +

{
FX⃗

}
dw3,

(5)

where the state variables X⃗ are selected as X⃗ =
{xc − xw,

.xc, xw − xr,
.xw}′ and:

A =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 −1
− ks

ms
− cs

ms
0 cs

ms

0 0 0 1
ks

mu

cs
mu

− ku
mu

− cs
mu

⎤⎥⎥⎥⎥⎥⎦
; B =

⎡⎢⎢⎢⎢⎣
0
1

ms

0
− 1

mu

⎤⎥⎥⎥⎥⎦
;

C =
⎡⎢⎢⎢⎣

0
0
−1
0

⎤⎥⎥⎥⎦ ; D =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0
− ks

ms
0 0 0

0 0 0 0
ks

mu
0 0 0

⎤⎥⎥⎥⎥⎥⎦
;

E =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 − cs

ms
0 cs

ms

0 0 0 0
0 cs

mu
0 − cs

mu

⎤⎥⎥⎥⎥⎦
; F =

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 − ku

mu
0

⎤⎥⎥⎥⎥⎦
And w⃗ is three-dimensional Brownian motion defined on
the probability space Φ(Ω,F,P) which is defined as fol-
lows:

w⃗ =
[
dw1 dw2 dw3

]T =
[
v1dt v2dt v3dt

]T (6)

The Equation 6 represents one of the principal charac-
teristics of Brownian motion process which implies that
the derivative of a Brownian motion is a white Gaussian
noise. In fact, by applying this equation and defining state
variables as X⃗ , the Equation 5 will be elicited. In addition,
Equation 5 shows that the road disturbance is not in phase
with the actuator input, therefore the system suffers from
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mismatched condition. Hence, in order to deal with mis-
matched condition, Equation 5 can be written as follows:

dX⃗ =
{

AX⃗ + BUa + 𝑓 (t)
}

dt +
[

DX⃗ EX⃗ FX⃗
]

dw⃗, (7)

where we use nonlinear uncertain function f(t) to repre-
sent the uncertainties with the mismatched condition, i.e.
rank [B |𝑓 (t) ] ≠ rank [B]. It is assumed that there exists a
known positive constant such that ‖𝑓 (t)‖ ≤ 𝛽. Equation 7
demonstrates an Itô stochastic model of suspension system
established on the probability space Φ. This model con-
tains the multiplicative stochastic perturbations in system
parameters as well as mismatched uncertainty.

Assumption 1. The input matrix B has full column
rank and the pair (A,B) is controllable.

3 STOCHASTIC SLIDING MODE
CONTROLLER

First of all, some concepts about stability of stochastic
systems are addressed which are defined in [28,29].

Definition 1. The stochastic system described by Itô
stochastic Equations 7 with U = 0 is said to be
mean-square stochastically stable if, for each 𝜀 > 0,
there exists a 𝛿 > 0 such that:

SUP
t0≤t<∞

E|X(t)|2 ≤ 𝜀 , 𝑓or all X(t0) = X0 , |X(t)| ≤ 𝛿

In addition, it's said to be mean-square asymptotically
stable if there exists a 𝜀 > 0, such that:

lim
t→∞

E|X(t)|2 = 0 , X(t0) = X0

Corollary 1. Assume that there exists a function V ∈
C1,2 (Rn × [t0,∞) ;R+)and constants c1 > 0 and c2 > 0
such that for all X ≠ X0 and t ≥ t0,

(i) c1 |X| ≤ V(X , t) ≤ c2 |X|
(ii)ℒ (V(X , t)) ≤ 0

Then, the uncertain system described by Itô stochastic
Equations 7 is mean-square asymptotically stable.

Definition 2. The stochastic system described by Itô
stochastic Equations 7 is said to be almost surely expo-
nentially stable if for all X0 ∈ Rn:

lim
t→∞

SUP 1
t

log |X (t; t0,X0)| < 0

Corollary 2. Assume that there exists a function V ∈
C1,2 (Rn × [t0,∞) ;R+) and constants p > 0, c1 > 0,
c2 ∈ R, c3 ≥ 0 and c3 > 2c2 such that for all X ≠ 0
and t ≥ t0,

(i) c1|X|p ≤ V (X , t)

(ii)ℒV (X , t) ≤ c2V (X , t)

(iii) |Vx (X , t) g (X , t)|2 ≥ c3V 2 (X , t)

where the function g(X, t) is introduced in (2). Then, the
stochastic system described by Itô stochastic Equations 7
is almost surely exponentially stable.

Definition 3. The perturbed system described by
Itô stochastic Equations 7 is said to be stochasti-
cally boundedly stable if the nominal system will be
mean-square stochastically stable and almost all the
sample paths of perturbed model will be ultimately
bounded by a small bound.

Now we are able to formulate the problem with which
we are dealing. For the stochastic model described in (7) a
sliding mode controller is to be investigated so that firstly,
the sliding dynamic is mean-square stochastically stable;
secondly, the state trajectory of system is driven onto the
determined sliding surface, and maintain there for all sub-
sequent time.

In this study, we utilized the PI sliding surface defined
as follows:

s(t) = Gx(t) −

t

∫
0

G(A + BK)x(s)ds (8)

where G ∈ Rm×n and K ∈ Rm×n are constant matrices.
The matrix K satisfies 𝜆(A + BK) < 0 and G is chosen
so that GB is non-singular. It can be easily proved that
the non-singularity of GB can be guaranteed by selecting
G = BT𝛶 where 𝛶 > 0, since B is deemed to be full
column rank.

It is worth nothing that the sliding surface s(t) defined
in (8) is well defined for the solution X(t) of the uncer-
tain model (7). In fact, it can be attained from [30] that the
solution X(t) of the stochastic system (7) is calculated as
follows:

X(t) = X0 +

t

∫
0

[(AX(s) + BUa(s)) + 𝑓 (s)] ds

+

t

∫
0

DX(s)dw1 +

t

∫
0

EX(s)dw2 +

t

∫
0

FX(s)dw3

,

(9)
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where the last three terms in (9) are the Itô stochastic inte-
grals. (9) implies that X(t) is semi-martingale, since X(t) is
composed of finite variation terms and a martingale term
[29]. Furthermore, it can be obtained from (8) and (9) such
that

s(t) = GX0 −

t

∫
0

[(GBKX(s) − GBUa(s)) − G𝑓 (s)] ds

+

t

∫
0

GDX(s)dw1 +

t

∫
0

GEX(s)dw2 +

t

∫
0

GFX(s)dw3

(10)
which implies that s(t) is also an Itô stochastic process.
This arises from the fact that in this study, the restrictive
condition GD = GE = GF = 0 is not imposed on the
proposed switching surface. Therefore, the sliding surface
s(t) = 0 is not a semi-martingale and its time-derivative
cannot be calculated. However, considering (10) and by
applying infinitesimal generatorℒ (.) described by (1), one
can attain ds(t) as follows:

ds(t) = ℒ (s(t))dt + GDX(t)dw1

+ GEX(t)dw2 + GFX(t)dw3

which leads to:

ds(t) = {(−GBKX(t) + GBUa(t)) + G𝑓 (t)} dt

+ GDX(t)dw1 + GEX(t)dw2 + GFX(t)dw3
(11)

Equation 11 represents a non-semi-martingale sliding sur-
face, since it is composed of non-finite variation terms and
a martingale term. It is well known that if the system trajec-
tories are able to enter the switching surface, then s(t) = 0.
Therefore, the control low U(t) which holds the system
trajectories on sliding surface can be obtained by letting
E {ds(t)} = 0, i.e.

E {ds(t)} = −(GBKX(t) − GBUa(t)) + G𝑓 (t) = 0 (12)

If the matrix G is chosen such that GB is non-singular, this
yields

U(t) = KX(t) − (GB)−1G𝑓 (t) (13)

Substituting Equation 13 into system (7) results the
dynamic equation of the system on sliding surface or slid-
ing mode dynamics as follows:

dX⃗ =
{
(A + BK)X⃗ +

[
In − B(GB)−1G

]
𝑓 (t)

}
dt

+
{

DX⃗
}

dw⃗1 +
{

EX⃗
}

dw⃗2 +
{

FX⃗
}

dw⃗3,
(14)

Now, we are able to tackle with the first task of sliding
mode controller design which is analyzing the robustly

stochastic stability of the sliding mode dynamic described
by Equation 14, and elicit sufficient conditions by means
of stochastic extension of Lyapunov stability theory and Itô
lemma.

Theorem 1. Consider the Itô stochastic system (7) with
assumption 1, and sliding surface described by (8). If
there exist symmetric matrix 𝛶 > 0 satisfying following
LMI:

Q = 2Υ(A + BK) + DTΥD + ETΥE + FTΥF < 0 (15)

With sliding mode matrix G = BT𝛶 , and if{
In − B(GB)−1G

}
𝑓 (t) be Euclidian norm-bounded i.e.

‖‖‖{In − B(GB)−1G
}
𝑓 (t)‖‖‖ ≤ 𝛼 = ‖‖In − B(GB)−1G‖‖ 𝛽

then the sliding dynamic in Equation 14 is stochastically
boundedly stable.

Proof. Let the Lyapunov candidate function for the
system is selected as follows

V = XTΥX (16)

Selected Lyapunov function satisfies following
inequality:

‖V(X , t)‖ ≥ 𝜆min(Υ)‖X‖2 > 0

By Itô lemma, we attain the following differential as
[30]:

dV(X(t), t) = ℒ (V(X(t), t))dt + 2XTΥDXdw1

+ 2XTΥEXdw2 + 2XTΥFXdw3
(17)

where infinitesimal generator is as follows:

ℒ (V(X(t), t)) = 2XTΥ
{
(A + BK)X +

[
In − B(GB)−1G

]
𝑓
}

+ tr
⎧⎪⎨⎪⎩[DX EX FX]

⎡⎢⎢⎣
XTDT

XTET

XTFT

⎤⎥⎥⎦Υ
⎫⎪⎬⎪⎭

= XTQX + 2XTΥ
[
In − B(GB)−1G

]
𝑓 (t)

(18)
And

Q = 2Υ(A + BK) + DTΥD + ETΥE + FTΥF

In order to prove stability of sliding dynamic, it is
enough to show that (18) is negative. By letting Q < 0,
it can be shown that:

ℒ (V(X(t), t)) ≤ 𝜆min(Q)‖X‖2 + 2𝛼 ‖Υ‖ ‖X‖ (19)
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Since 𝜆min(Q) < 0, consequently infinitesimal gen-
erator ℒ (V(X(t), t)) < 0 for all t and X ∈ Bc(𝜂),
where Bc(𝜂) is complement of the closed ball B(𝜂),
centered at X = 0 with radius 𝜂 = 2𝛼 ‖Υ‖ ∕𝜆min(Q).
Thereby, based on the corollary. 1 the nominal system
is mean-square stochastically stable and the sliding
mode dynamic is stochastically boundedly stable.

Theorem 2. For the Itô stochastic system (7) with
assumption 1, and sliding surface described by (8), If
the condition of theorem 1 is satisfied then the system is
almost surely exponentially stable, too.

Proof. Considering Lyapunov candidate function (14),
it is implied:

𝜆min(Υ)‖X‖2 ≤ ‖V(X , t)‖ ≤ 𝜆max(Υ)‖X‖2

From the theorem 1 it is proved that

ℒ (V(X(t), t)) < 0

Furthermore, following equation is hold for Lyapunov
candidate|Vx(X , t)g(X , t)|2 = ||2XTgX||2 ≤ 2𝜆max(g)‖X‖4

Therefore, by selecting p = 2, c1 = 𝜆min(Υ), c2 = 0
and c3 = 𝜆max(g) and based on corollary 2 it is proved
that the stochastic system is almost surely exponen-
tially stable.

Remark 1. It is noted that in work of [31] the restric-
tive condition GD = GE = GF = 0 is imposed
to sliding mode dynamics only to make the sliding
surface (11) semi-martingale. On the other hands, G
should be design such that GB is non-singular. Appar-
ently, these conditions cannot be satisfied in wide
range of practical models such as suspension system.
Here, to tackle with this encumbrance we choose
a non-semi-martingale sliding surface such that its
expectation is equal to zero.

Now we proceed to the second task of sliding mode
which is designing an SMC law for stochastic model (7)
such that the reachability of the sliding surface (8) is
ensured.

Theorem 3. Consider the Itô stochastic system (7) with
assumption 1, and sliding surface described by (8) with
G = BT𝛶 where 𝛶 satisfies the LMI described in (15).
Then, it can be shown that the mean-square reachability
of the sliding surface (8) is assured by SMC law (20) and
condition (21):

Ua(t) = −(GB)−1 [(GAX(t) + 𝜙s(t)) + 𝜌(sgn(s(t))
]

(20)

‖A + BK‖ ‖X(t)‖ ≥ ‖𝑓 (t)‖ (21)
with 𝜌 > 0 a small constant.

Proof. By plugging (20) into (12) it follows that:

E {ds(t)} = −(GA + GBK)X(t) − 𝜙s(t)

− 𝜌sgn(s(t)) + G𝑓 (t)
(22)

to investigate the reachability, we select the Lyapunov
function as V2(t) = 1

2
sTs. Therefore, we have:

.
V(t) = sT(t) .s(t)

= sT(t) [−(GA + GBK)X(t) − 𝜙s(t)

−𝜌sgn(s(t)) + G𝑓 (t)
]

≤ −
[‖𝜙‖ ‖s(t)‖2 + 𝜌 ‖s(t)‖+

(‖G‖ ‖A + BK‖ ‖X(t)‖ − ‖G‖ ‖𝑓 (t)‖) ‖s(t)‖]
If the hitting condition (21) is satisfied, it follows:

.
V(t) ≤ − ‖𝜙‖ ‖s(t)‖2 − 𝜌 ‖s(t)‖ ≤ 0

Which implies that the mean-square of trajectories of
the Itô stochastic system (7) driven into sliding surface
s(t) = 0 despite the mismatched uncertainty.

For further improvement, combination of proposed
stochastic SMC and adaptive dynamic surface [32] can be
applied which can be carried out as future work.

Remark 2. In this paper we deal with sliding mode
control of suspension system subject to stochas-
tic uncertainties. The random nature of parameters
causes the states and control signal to become stochas-
tic as well. Thus, the chattering effect in sliding surface
and input signal are negligible against the fluctuations
of random signals.

4 NUMERICAL SIMULATION

In order to investigate the effectiveness of stochastic robust
controller, the performance of the suspension system using
stochastic sliding mode controller has been simulated on
computer. In the numerical simulations, we have com-
puted the results by applying the Milstein discretization
approximation to the Itô stochastic differential Equation 7.
In this simulation the following values are selected: ms =
280kg, mu = 55kg, Cs = 1000Ns∕m, Ks = 18800N∕m,
Ku = 190000N∕m, K = [−15840 − 350129100 − 2175],
𝜌 = 0.01. Solving the LMI (15) resulted the following
stochastic sliding mode design matrices:

Υ = 108

⎡⎢⎢⎢⎣
0.0145 0.0009 −0.0027 0.0000
0.0009 0.0016 −0.0425 0.0004
−0.0027 −0.0425 1.6708 −0.0177
0.0000 0.0004 −0.0177 −0.0004

⎤⎥⎥⎥⎦
G = 104[0.0301 0.1195 − 4.4719 − 0.0795]T
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FIGURE 2 Damping and springs characteristics variations
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Road vertical displacement and velocity (Case 1)
[Color figure can be viewed at wileyonlinelibrary.com]

Let us set the variation of system parameters affected by
stochastic perturbations as it is depicted in Figure 2.

In order to evaluate the performance of the designed
closed-loop active suspension, we consider two typical
cases.

4.1 Case 1
Let the set of road roughness be a sinusoidal bump as it
is shown in Figure 3. Here, the mismatched uncertainty
is vertical road velocity which conforms a sinusoidal func-
tion too, as it is depicted in Figure 3.

Figure 4 shows the performance of perturbed active
suspension using stochastic sliding mode controller. As

FIGURE 4 State response of active perturbed system (Case 1)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Sliding surface and control input (Case 1) [Color
figure can be viewed at wileyonlinelibrary.com]

it is clear, the closed loop system stays robust in spite
of parametric perturbations and exogenous disturbance.
In order to fulfill the objectives of designing an active
suspension system, i.e. to provide the ride comfort
and road holding, state response of system is observed
and simulated. The results show that suspension travel
(xc − xw) remains within the limited bound ±4 cm, and
wheel deflection (xw − xr) varies within range ±1 cm.

Furthermore, the control effort and switching surface
are depicted in Figure 5. This illustration shows that the
sliding mode is reached after about 4 seconds.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Stochastic and non-stochastic SMC responses of
perturbed system (Case 1) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 7 Sliding surface and Control input of non-stochastic
method (Case 1) [Color figure can be viewed at
wileyonlinelibrary.com]

In order to compare the stochastic sliding mode
controller with conventional SMC, Figure 6 and Figure 7
illustrate the performance of suspension imposed to para-
metric perturbations using stochastic and non-stochastic
sliding mode controller. Figure 6 indicates that cabin accel-
eration and wheel deflection of vehicle are more robust
against parametric perturbations in the stochastic sliding
mode controller.

Based on Figure 6 and Figure 7, the stochastic
robust controller outperformed non-stochastic technique
in terms of providing ride comfort, road holding, consum-
ing less control effort and also converging faster to the
switching surface. Furthermore, non-stochastic controller
suffers from more fluctuations in its responses.

FIGURE 8 Road vertical displacement and velocity (Case 2)
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 State response of active perturbed system (Case 2)
[Color figure can be viewed at wileyonlinelibrary.com]

4.2 Case 2
Here, consider the road surface as a random vibrational
profile which is described by the following approximated
PSD function:

Gq( 𝑓 ) = 4𝜋2Gq(n0)n0
2v,

where, Gq(n0) stands for the road roughness coefficient, n0
is the reference spatial frequency and v is the vehicle veloc-
ity. Selecting Gq(n0) = 32 × 10−6m3 and n0 = 0.1 the
road profile is depicted in Figure 8. Here, the mismatched
uncertainty is vertical road velocity which also is showed
in Figure 8.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 10 Stochastic and non-stochastic SMC responses of
perturbed system (Case 2) [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 11 Suspension acceleration PSD for Stochastic and
non-stochastic SMC (Case 2) [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 9 shows the performance of perturbed active
suspension using stochastic sliding mode controller. As
it is clear, the closed loop system stays robust in spite
of parametric perturbations and mismatched disturbance.
ride comfort (xc − xw), packaging (xw − xr) and road hold-
ing ẍc of suspension is observed and simulated in terms
of state responses of system which are restricted within a
limited bound.

In order to compare the stochastic sliding mode con-
troller with conventional SMC, Figure 10 illustrates the
performance of suspension imposed to parametric pertur-
bations using stochastic and non-stochastic sliding mode
controller. Figure 10 indicates that cabin acceleration

and wheel deflection of vehicle are more robust against
parametric perturbations in the stochastic sliding mode
controller.

Figure 11 indicates that the PSD of cabin acceleration
is lower in the stochastic-SMC method for the frequency
band 1–10 Hz, which is the frequency range closely related
to the widely accepted ride comfort level.

5 CONCLUSIONS

In this paper, the stochastic robust control problem for
Itô uncertain model of vehicle suspension have been
addressed. The stochastic sliding mode controller is devel-
oped in order to cope with mismatched condition and
parametric uncertainties of model. The stability analysis
is conducted to achieve sufficient condition for stochastic
stability of system trajectories on sliding surface. Control
law has been synthesized such that the state trajecto-
ries of the closed-loop systems are stochastically reached
to the specified switching surface. In order to validate
performance of control technique, a simulation study is
performed for two different cases. The results show that
the use of the proposed stochastic sliding mode controller
proved to be effective in controlling Itô uncertain model
of vehicle suspension and more robust compared to the
non-stochastic conventional sliding mode method.

ACKNOWLEDGEMENTS

This research was in part supported by a grant from the
Institute for Research in Fundamental Sciences (IPM)
under grant number: CS 1397-4-56.

ORCID

Alireza Ramezani Moghadam https://orcid.org/
0000-0003-2364-2738

REFERENCES
1. S. Y. Han, C. H. Zhang, and G. Y. Tang, Approximation optimal

vibration for networked nonlinear vehicle active suspension with
actuator time delay, Asian, J. Control 19 (2017), 983–995.

2. C. Wei et al., Novel optimal design approach for output-feedback
H∞ control of vehicle active seat-suspension system, Asian J. Con-
trol (2018). https://doi.org/10.1002/asjc.1887

3. Y. M. Sam, J. H. Osman, and M. R. A. Ghani, A class of
proportional-integral sliding mode control with application to
active suspension system, Syst. Control Lett. 51 (2004), 217–223.

4. M. X. Cheng and X. H. Jiao, Observer-based adaptive l2 dis-
turbance attenuation control of semi-active suspension with MR
damper, Asian J. Control 19 (2017), 346–355.

5. T. J. Gordon, C. Marsh, and M. G. Milsted, A comparison of adap-
tive LQG and nonlinear controllers for vehicle suspension systems,
Veh. Syst. Dyn. 20 (1991), 321–340.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
https://orcid.org/0000-0003-2364-2738
https://orcid.org/0000-0003-2364-2738
https://orcid.org/0000-0003-2364-2738
https://doi.org/10.1002/asjc.1887


10 MOGHADAM AND KEBRIAEI

6. L. Xiao and Y. Zhu, Sliding-mode output feedback control for
active suspension with nonlinear actuator dynamics, J. Vibr. Con-
trol 21 (2015), 2721–2738.

7. R. A. Ibrahim, Parametric Random Vibration, Courier Dover
Publications, Mineola, 2008.

8. C. W. To, Nonlinear Random Vibration, Swets & Zeitlinger, Lisse,
Netherlands, 2000.

9. W. Sun et al., Multi-objective control for uncertain nonlinear
active suspension systems, Mechatronics 24 (2014), 318–327.

10. H. Li et al., Fuzzy sampled-data control for uncertain vehicle
suspension systems, IEEE Trans. Cybern. 44 (2014), 1111–1126.

11. Y. Huang et al., Adaptive control of nonlinear uncertain active
suspension systems with prescribed performance, ISA Trans. 54
(2015), 145–155.

12. D. P. Li and D. J. Li, Adaptive neural tracking control for an
uncertain state constrained robotic manipulator with unknown
time-varying delays, IEEE Trans. Syst. Man Cybern. -Syst. 8
(2017), 1–10.

13. L. Liu, Y. J. Liu, and S. Tong, Neural networks-based adap-
tive finite-time fault-tolerant control for a class of Strict-Feedback
switched nonlinear systems, IEEE Trans. Cybern. 54 (2018),
145–155.

14. W. Liu et al., Aircraft trajectory optimization for collision avoid-
ance using stochastic optimal control, 2019. https://doi.org/10.
1002/asjc.1855

15. J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation
and Control, Vol. 17, SIAM, Philadelphia, 2008.

16. H. Schioler, M. Simonsen, and J. Leth, Stochastic stability of
systems with semi-Markovian switching, Automatica 50 (2014),
2961–2964.

17. P. Zhao, D. H. Zhai, and Y. Sun, Nonsmooth stabilization of a class
of markovian jump stochastic nonlinear systems with parametric
and dynamic uncertainties, Asian J. Control (2019). https://doi.
org/10.1002/asjc.1748

18. Q. Wang and C. Wei, Decentralized robust adaptive output feed-
back control of stochastic nonlinear interconnected systems with
dynamic interactions, Automatica 54 (2015), 124–134.

19. R. Herzallah, Generalised probabilistic control design for uncer-
tain stochastic control systems, Asian J. Control 20 (2018),
2065–2074.

20. M. Xing and F. Deng, Tracking control for stochastic multi-agent
systems based on hybrid event-triggered mechanism, Asian J. Con-
trol (2019). https://doi.org/10.1002/asjc.1823

21. B. Jiang et al., A novel robust fuzzy integral sliding mode con-
trol for nonlinear Semi-Markovian jump TS fuzzy systems, IEEE
Trans. Fuzzy Syst. 26 (2018), 3594–3604.

22. Y. Kao et al., A sliding mode approach to H non-fragile
observer-based control design for uncertain Markovian
neutral-type stochastic systems, Automatica 52 (2015), 218–226.

23. C. Wu et al., Secure estimation for Cyber-Physical systems via
sliding mode, IEEE Trans. Cybern. 48 (2018), 1–12.

24. H.-C. Ting, J.-L. Chang, and Chen Y. -P., Output feedback inte-
gral sliding mode controller of time-delay systems with mismatch
disturbances, Asian J. Control 114 (2012), 85–94.

25. B. Lin, X. Su, and X. Li, Fuzzy sliding mode control for active
suspension system with proportional differential sliding mode
observer, Asian J. Control 21 (2019), 264–276.

26. V. S. Deshpande et al., Disturbance observer based sliding mode
control of active suspension systems, J. Sound Vibr. 333 (2014),
2281–2296.

27. J. Q. Sun, Stochastic Dynamics and Control, Vol. 4, Elsevier,
Amsterdam, 2006.

28. X. Mao, Stochastic differential Equations and Applications,
Elsevier, Amsterdam, 2007.

29. X. Mao, Stability of Stochastic Differential Equations with Respect
to Semimartingales, Longmana, Harlow, England, 1991.

30. V. Kolmanovskii and A. Myshkis, Applied Theory of Functional
Differential Equations, Vol. 85, Springer Science & Business
Media, Berlin, Germany, 2012.

31. Y. Niu, D. W. Ho, and J. Lam, Robust integral sliding mode
control for uncertain stochastic systems with time-varying delay,
Automatica 41 (1991), 873–880.

32. H. Ma et al., Nussbaum gain adaptive backstepping control of
nonlinear strict-feedback systems with unmodeled dynamics and
unknown dead zone, Int. J. Robust Nonlinear Control 28 (2018),
5326–5343.

AUTHOR BIOGRAPHIES

Alireza Ramezani
Moghadam received the B.Sc.
and M.Sc. degree in electri-
cal engineering from the Iran
University of Science and
technology and University of

Tehran, Tehran, Iran, in 2013 and 2017, respectively.
His research interests include optimization, robust
control, and stochastic control with applications in
vibrational systems.

Hamed Kebriaei received
the B.Sc. and M.Sc. degree in
electrical engineering from
the University of Tehran and
Tarbiat Modares University,
Tehran, Iran, in 2005 and 2007,

respectively, and the Ph.D. degree in control sys-
tems from the university of Tehran, Tehran, Iran, in
2010. He is currently an Associate Professor of ECE,
the Director of Smart Network Lab, and the Head
of the Control Department with the School of ECE,
the University of Tehran, Tehran, Iran. His research
interests include game theory, optimization, and
stochastic control. He is a senior member of IEEE
Control Systems Society.

How to cite this article: Moghadam AR, Kebri-
aei H. Stochastic sliding mode control of active
vehicle suspension with mismatched uncertainty
and multiplicative perturbations. Asian J Control.
2019;1–10. https://doi.org/10.1002/asjc.2135

https://doi.org/10.1002/asjc.1855
https://doi.org/10.1002/asjc.1855
https://doi.org/10.1002/asjc.1748
https://doi.org/10.1002/asjc.1748
https://doi.org/10.1002/asjc.1823
https://doi.org/10.1002/asjc.2135

	Stochastic sliding mode control of active vehicle suspension with mismatched uncertainty and multiplicative perturbations
	Abstract
	INTRODUCTION
	SYSTEM MODEL
	STOCHASTIC SLIDING MODE CONTROLLER
	NUMERICAL SIMULATION
	Case 1
	Case 2

	CONCLUSIONS
	References


