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Abstract: In this paper we use a recently proposed metaheuristic, the Ant
System, to solve the Vehicle Routing Problem in its basic form, i.e., with ca-
pacity and distance restrictions, one central depot and identical vehicles. A
“hybrid” Ant System algorithm is first presented and then improved using
problem-specific information (savings, capacity utilization). Experiments on
various aspects of the algorithm and computational results for fourteen bench-
mark problems are reported and compared to those of other metaheuristic ap-
proaches such as Tabu Search, Simulated Annealing and Neural Networks.

8.1 INTRODUCTION

The Ant System, introduced by Colorni, Dorigo and Maniezzo [6, 10, 12] is
a new distributed metaheuristic for hard combinatorial optimization problems
and was first applied to the well known Traveling Salesman Problem (TSP). It
has further been applied to the Job Shop Scheduling Problem [7], to the Graph

Colouring Problem [8] and to the Quadratic Assignment Problem [18].

Observations on real ants searching for food were the inspiration to imitate
the behaviour of ant colonies for solving combinatorial optimization problems.
Real ants are able to communicate information concerning food sources via
an aromatic essence, called pheromone. They mark the path they walk on
by laying down pheromone in a quantity that depends on the length of the
path and the quality of the discovered food source. Other ants can observe
the pheromone trail and are attracted to follow it. Thus, the path will be
marked again and will therefore attract more ants. The pheromone trail on
paths leading to rich food sources close to the nest will be more frequented and
will therefore grow faster.
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The described behaviour of real ant colonies can be used to solve combinato-
rial optimization problems by simulation: artificial ants searching the solution
space simulate real ants searching their environment, the objective values corre-
spond to the quality of the food sources, and an adaptive memory corresponds
to the pheromone trails. In addition, the artificial ants are equiped with a local
heuristic function to guide their search through the set of feasible solutions.

In this paper we present the application of the ant system to the Vehicle
Routing Problem (VRP) with one central depot and identical vehicles. The
remainder of the paper is organized as follows: In Section 8.2 we present the
VRP and the ant system algorithm to tackle it. A ”hybrid” ant system algo-
rithm, using the 2-opt heuristic and problem specific information, is developed
in Section 8.3 and Section 8.4, respectively. Experiments on various aspects
of the algorithm and computational results for fourteen benchmark problems
are presented in Section 8.5. We conclude with a discussion of the results in
Section 8.6.

8.2 ANT SYSTEM FOR VRPS

The VRP can be represented by a complete weighted directed graph G =
(V,A,d) where V = {wg,v1,v2,...,0,} is a set of vertices and A = {(v;,v;) :
1 # j} is a set of arcs. The vertex vy denotes the depot, the other vertices of
V' represent cities or customers, and the nonnegative weights d;;, which are
associated with each arc (v;,v;), represent the distance (or the travel time or
the travel cost) between v; and v;. For each customer v;, a nonnegative demand
¢; and a nonnegative service time ¢; is given (go = 0,dp = 0). The aim is to
find minimum cost vehicle routes where

m  every customer is visited exactly once by exactly one vehicle
m  all vehicle routes begin and end at the depot

m  for every vehicle route the total demand does not exceed the vehicle ca-
pacity @

m  for every vehicle route the total route length (including service times)
does not exceed a given bound L.

The VRP is a very complicated combinatorial optimization problem that has
been studied since the late fifties because of its central meaning in distribution
management. Problem specific methods (e.g. [5, 15]) as well as metaheuristics
like tabu search (e.g. [13]), simulated annealing (e.g. [19]), genetic algorithms
(e.g. [17]) and neural networks (e.g. [14]) have been proposed to solve it.

The VRP and the TSP are closely related. As soon as the customers of the
VRP are assigned to vehicles, the VRP is reduced to several TSPs. For that
reason, our approach is highly influenced by the TSP ant system algorithm by
Dorigo et al. [12].

To solve the VRP, the artificial ants construct vehicle routes by successively
choosing cities to visit, until each city has been visited. Whenever the choice of
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another city would lead to an infeasible solution for reasons of vehicle capacity
or total route length, the depot is chosen and a new tour is started. For the
selection of a (not yet visited) city, two aspects are taken into account: how
good was the choice of that city, an information that is stored in the pheromone
trails 7;; associated with each arc (v;,v;), and how promising is the choice of
that city. This latter measure of desirability, called visibility and denoted by
7ij, is the local heuristic function mentioned above. In the case of the VRP (or
the TSP) it is defined as the reciprocal of the distance, i.e., 7;; = 1/d;;.

With Q = {v; € V : v; is feasible to be visited} U {v}, city v; is selected to
be vistited after city v; according to a random-proportional rule [11] that can
be stated as follows:

[Ti']a[ni']ﬁ 3
z z ifv;, € Q
§ [rin]®[min]? J
pij = nea T (8.1)

0 otherwise

This probability distribution is biased by the parameters a and 3 that de-
termine the relative influence of the trails and the visibility, respectively.

After an artificial ant k has constructed a feasible solution, the pheromone
trails are laid depending on the objective value Lg. For each arc (v;,v;) that
was used by ant k, the pheromone trail is increased by ATZ@- = 1/Lg. In addition
to that, all arcs belonging to the so far best solution (objective value L*) are
emphasized as if o ants, so-called elitist ants, had used them. One elitist ant
increases the trail intensity by an amount A7 that is equal to 1 JL* if arc
(vs,v;) belongs to the so far best solution, and zero otherwise. Furthermore,
part of the existing pheromone trails evaporates (p is the trail persistence).!
Thus, the trail intensities are updated according to the following Formula (8.2),
where m is the number of artificial ants:

m
T = pTinld + Z ATikj + AT (8.2)
k=1

Concerning the initial placement of the artificial ants, it was found that the
number of ants should be equal to the number of cities in the TSP, and that
each ant should start its tour from another city.?2 The implication for the VRP
is that as many ants are used as there are customers in the VRP (i.e., m = n),
and that one ant is placed at each customer at the beginning of an iteration.
After initializing the basic ant system algorithm, the two steps,construction of
vehicle routes and trail update, are repeated for a given number of iterations.

LElitist ants improved the results obtained for the TSP and were therefore also used for the
VRP. Trail evaporation is used to avoid early convergence. For a more detailed description
the reader is referred to [12].

2These are results of experiments by Dorigo et al. [12] as well as our own experiments.
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8.3 “HYBRID” ANT SYSTEM ALGORITHM

Hybridization in general means combining ideas of two different methods in
one approach. Such proceeding is common practice for hard combinatorial
optimization problems and has been successfully applied to other problems
such as timetabling [3] or production scheduling [20].

The 2-opt-heuristic for the TSP [9] is an exchange procedure that generates
a so-called 2-optimal tour. A tour is called 2-optimal if there is no possibility to
shorten the tour by exchanging two arcs. In vehicle routing, 2-opt is used in the
Sweep-Algorithm [15], where customers are first clustered and then 2-optimal
vehicle routes for each cluster are generated. The same can be done with
solutions constructed by artificial ants: at the end of an ant system iteration,
each vehicle route generated is checked for 2-optimality and is improved if
possible. Only then the total objective value is calculated and the trails are
updated. The ”hybrid” ant system® for the VRP can be described by the
schematic algorithm given in Figure 8.1.

I Initialize
II  For I"™*” iterations do:
(a) For each ant k =1,...,m generate a new solution
using (8.1)
(b) Improve all vehicle routes using the 2-opt-heuristic
(c) Update the pheromone trails using (8.2)

Figure 8.1 "Hybrid" Ant System Algorithm

The resulting quantitative improvements achieved by the ”hybrid” ant sys-
tem are shown in Section 8.5. In the next section, the ”hybrid” ant system is
further improved by including problem-specific information in step II (a) of the
algorithm, the construction of vehicle routes.

8.4 PROBLEM SPECIFIC IMPROVEMENTS

The close relation between the VRP and the TSP, and thus the correspond-
ing ant system approaches, has been mentioned above. One major difference,
namely the existence of one distinct city in the VRP, the depot, has been taken
into account. But the VRP has some further characteristics that can be in-
cluded in an ant system algorithm for the purpose of improving the quality of
the solutions.

In the VRP, not only the relative location of two cities is important*, but
also their relative location to the depot vg is essential for the tour length. The

31t is questionable whether the addition of the 2-opt approach deserves the name hybrid
method or whether it is only a post-optimization. We use the term hybrid following Goldberg’s
schematic of a “hybrid using a batch scheme” [16], p.203.

4This information is included in the visibility.
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so-called savings® measure the favourability of combining two cities v; and v;
in a tour and can be quantified by: p;; = dio + do; — d;;. High savings p;;
indicate that visiting customer v; after v; is a good choice. This can be used to
improve the quality of the ant system algorithm if high savings lead to a high
probability of selection, i.e., if p;; ~ #Zj where the parameter v regulates the
relative influence of the savings.

Furthermore, for a capacity restricted problem as the VRP, it seems reason-
able to assure a high degree of capacity utilization of the vehicles. Let Q; be
the total capacity used including the capacity requirement of customer v;, then
high® values k;; = (Q; + ¢j)/Q indicate high capacity utilization through the
visit of customer v; after visiting v;. This again can be used for the ant system
by giving those customers a high probability of being selected: p;; ~ mf‘] The
parameter A determines the relative influence of «;;. The probability distribu-
tion for selecting customer v; to be visited next after customer v; can thus be
extended to:

(7331 [m33]° (i3] [wi5]* e
Yonea  [manl*minlPluin] Y [min]* ifjed

Pij = (8-1/)

0 otherwise

8.5 COMPUTATIONAL RESULTS

The ant system for VRPs was tested on fourteen benchmark problems described
in [4]. These problems contain between 50 and 199 customers in addition to
the depot. The customers in problems C1-C10 are randomly distributed in the
plane, while they are clustered in problems C11-C14. Problems C1-C5 and C6-
C10 are identical, except that for the latter the total route length is bounded,
whereas for the former it is not. The same is true for the clustered problems:
problems C13-C14 are the counterparts of problems C11-C12 with additional
route length constraint. For the problems with bounded route length, all cus-
tomers require the same service time 6 = &1 = --- = §,,.

Before the results for these test problems are presented at the end of this
section, we illustrate some of our experiments’ as well as the stepwise improve-
ment of the ant system in problem C1, which contains 50 randomly distributed
customers. As a summary of the results we present the deviation from the
best known solution® for the best and the average solution out of 30 runs in

5See the Savings-Algorithm in [5]. That approach starts with depot-customer-depot tours.
Then, according to decreasing savings, tours are combined as long as no restrictions are
violated.

651-]- < 1 for a feasible solution.

"For each experiment we simulated 30 independent ant system runs of 50 iterations each. As
we used one ant per customer, the number of solutions generated per iteration was equal to
the number of customers, thus a total of 2500 solutions was generated per run.

8These solutions are not always the optimal but the ”best published” solutions as only for
some of them optimality has been proven. In the following there is no distinction made
regarding this aspect.
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Table 8.1. The basic ant system algorithm (denoted by AS in Table 8.1) solved

| method || [%) | dev. || best | dev. |
NN 646.22 | 23.18% 599.66 | 14.31%
AS 617.47 | 17.70% 590.74 | 12.61%
HAS 592.32 | 12.91% 564.44 7.59%

HAS-sav 554.36 5.67% 542.61 3.43%
HAS-cap || 563.52 7.42% 542.85 3.48%
HAS-1 546.11 4.10% 532.88 1.58%
HAS-5 540.42 3.01% 524.61 0.00%

Table 8.1 Comparison of Results

problem C1 just satisfactorily in the first experiment.? The best solution the
ants found by selecting the customers according to the probability distribution
given in Formula (8.1) was 12%, the average over 30 runs was 17% above the
optimum. To see whether the pheromone trails contribute at all to the re-
sults, we tested a = 0, a setting that could be described as a stochastic nearest
neighbour heuristic (denoted by NN). The results showed clearly that using the
trail information does contribute to the quality of the solution: without it the
average objective value was 23% above the optimum. The ”hybrid” ant system
(HAS) on the other hand, generated much better solutions (dev. 7%) than the
basic ant system.

Through the problem-specific features described in Section 8.4, i.e., through
the use of Formula (8.1") for the selection probabilities, a further reduction
of route lengths was achieved. In three tests we studied the sole influence of
respectively, savings (y = 5, A = 0, denoted by HAS-sav), capacity utilization
(v =0,\ =5, HAS-cap), as well as their combined influence (y = A = 5, HAS-
1).19 Both features improved the performance of the ant system algorithm,
with the savings yielding better results (avg. dev. 5.6% as compared to 7.4%),
and worked best when applied simultaneously (avg. dev. 4%). As a consequence
of the reduced influence of the pheromone trails compared to visibility, savings
and capacity utilization, the adaptive effect almost vanished. Therefore, all
terms were weighted equally and the parameter setting « = =+ = XA =5 was
chosen, which lead to the best results where the ant system (HAS-5) found the
optimal solution (total length 524.61).

In order to analyze the ant-specific contribution to the quality of the results,
we further compared the ”hybrid” ant system (HAS-5) with a stochastic local
search procedure''. The latter uses visibility, savings and capacity utilization
for tour construction (o = 0,8 = v = A = 5, i.e., no pheromone trails are
used), and the 2-opt heuristic for tour improvement.

9The parameter setting o = 1, 8 = 5 and p = 0.75 lead to good results for the TSP
(cf. Footnote 2) as well as the VRP and was chosen, if not indicated otherwise.

10The other two parameters were kept at & = 1 and 8 = 5.

1 Recall the similar comparison between the basic ant system (AS) and NN.
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1 2500

Figure 8.2 Ant System vs. Local Search

Figure 8.2 depicts the continuous reduction of objective values (50 iterations
= 2500 solutions, averaged over 30 runs) for both methods. The graph shows
clearly that the local search € 2-opt procedure is outperformed by the ”hybrid”
ant system. In the early phase of the search, the two methods look almost
identical. The trail intensities are still close to their initial value 79 and have
therefore hardly any effect on the selection probabilities. Thus, the artificial
ants select the customers in this stage primarily according to visibility, sav-
ings and capacity utilization, which is also done in the local search procedure.
Later, when trail intensities for some arcs increase because of frequent use, and
decrease for others because of evaporation, the ants use this accumulated infor-
mation. Thus, the solution space is reduced and better solutions are generated,
whereas the local search is still based on initial data only.

[ o1 [%) [ dev. J[ best [ dev. |

0 559.74 | 6.70% 552.04 | 5.23%
10 || 550.12 | 4.86% 528.20 | 0.68%
30 || 544.17 | 3.73% 525.13 | 0.10%
50 || 540.42 | 3.01% 524.61 | 0.00%
70 || 545.40 | 3.96% 530.26 | 1.08%
90 548.94 | 4.64% 531.84 | 1.38%

Table 8.2 Influence of Elitist Ants

In further tests we studied the influence of the elitist ants. In [12] the ant
system performance for a TSP with 30 cities first increased with the number of
elitist ants (up to an optimal range around 8) and then decreased again. For the
VRP we found a similar phenomenon: introducing elitist ants and increasing
their number brought better results, but only up to a range around 50, i.e.,
the number of “regular” ants / customers. The use of more elitist ants lead to
poorer performance, caused by massive exploration of suboptimal tours early
in the search. The results for various numbers of elitist ants are illustrated in
Table 8.2.

Furthermore, we looked at the initial placement of the artificial ants. As
the VRP has one distinct city, namely the depot, starting the search from
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[ initial placement [ @ | dev. [[ best [ dev. |
depot 550.84 5.00% 527.98 0.64%
customer 540.42 | 3.01% 524.61 | 0.00%
random 545.76 4.03% 531.90 1.39%

Table 8.3 Influence of Initial Placement

there is another possibility because the depot is per definition included in every
vehicle route. Alternatively, choosing the starting points for the artificial ants
randomly is also possible. The comparison of these options, which is illustrated
in Table 8.3, confirms our assumption that placing one ant at each customer is
best.

[ p I @ T dev. [ best [ dev. |

0.99 545.68 | 4.02% 531.66 1.34%
0.95 544.33 | 3.76% 525.13 | 0.10%
0.75 540.42 | 3.01% 524.61 | 0.00%
0.50 544.41 | 3.77% 524.63 | 0.00%
0.25 548.42 | 4.54% 524.93 | 0.06%

Table 8.4 Influence of Trail Persistence

Finally, the influence of the trail persistence was subject of further tests
(cf. Table 8.4). The results underline our early findings that p = 0.75 is a
good setting. Higher values prevent efficient exploration of the search space
as the trail intensities on arcs belonging to suboptimal vehicle routes are kept
too high for too long. For lower values the learning effect diminishes and even
though the finding of very good solutions is possible, the average quality of the
algorithm decreases.

Table 8.5 compares the computational results for the fourteen test problems.
For each problem the columns give the problem size n, the vehicle capacity @,
the maximal route length L, the service time ¢ and the objective value of the
optimal solution. In the last three columns, the best solutions obtained with
the ant system, the deviation from the optimum and the number of vehicles
used are shown. According to our findings, we set p = 0.75 and used m = n
ants, initially placed at the customers vy, ..., v,. For all problems I"** = 100
iterations were simulated with ¢ = n elitist ants. The random problems were
solved using HAS-5 (&« = 8 = v = A = 5). For the problems C11-C14, where
the customers are clustered, we found that the savings do not really contribute
to an improvement. The reason is that cities belonging to different clusters,
which are located behind each other, might be combined to a tour because of
high savings (which result from being located in line with the depot). Thus,
we used HAS-cap (¢« = 1,8 =5,y =0 and A = 5) for the clustered problems.

The computational results show that reasonably good solutions can be ob-
tained by the ant system. Especially the results on the clustered problem
instances C11-C14 seem to be better. There the deviation from the optimum
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Random problems

optimal Ant vehicles
| Prob. | " | Q | L | ° | solution | System dev. used
C1 50 160 ) 0 524.617 524.61 0.00% 5
Cc2 75 140 oo 0 835.26% 870.58 4.23% 10
C3 100 200 oo 0 826.14% 879.43 6.45% 8
C4 150 200 oo 0 1028.429 1147.41 11.57% 12
Cs5 199 200 oo 0 1291.450 1473.40 14.09% 16
C6 50 160 200 10 555.43% 562.93 1.35% 6
Cc7 75 140 160 10 909.68% 948.16 4.23% 12
cs 100 200 230 10 865.94% 886.17 2.34% 9
c9 150 200 200 10 1162.55% 1202.01 3.39% 14
C10 199 200 200 10 1395.85° 1504.79 7.80% 19
[ Clustered problems ]
optimal Ant vehicles
| Prob. | ™ | Q | L | s | solution || System dev. used
C11 120 200 oo 0 1042.11% 1072.45 2.91% 9
Cc12 100 200 oo 0 819.56% 819.96 0.05% 10
C13 120 200 720 50 1541.14% 1590.52 3.20% 12
Cl14 100 200 1040 90 866.37% 869.86 0.40% 11
@ Taillard [24]

b Rochat and Taillard [22]

Table 8.5 Ant System Results

ranged from 0.05% to 3.20%. Most random problems were solved within a 5%
range, only for problems C4 and C5 the ant system showed higher deviations.

As run times are another criterion for the quality of an algorithm the pro-
posed method is compared to other metaheuristic approaches for which run
times were reported in Table 8.6. Tabu search (the sequential algorithm from

Random problems

Prob Tabu Simulated Neural Ant
rob- Search [21] Annealing [19] Networks [14] System
C1 0.00% 0.9 0.65% 0.1 2.78% 0.9 0.00% 0.6
Cc2 0.27% 16.8 0.40% 59.4 — — 4.23% 2.4
C3 0.17% 33.9 0.37% 102.9 8.14% 6.5 6.45% 11.3
C4 2.52% 27.2 2.88% 71.6 5.47% 13.2 11.57% 28.5
cs 3.64% 16.3 6.55% 22.9 8.51%  23.2 14.09% 82.2
c6 0.00% 3.2 0.00% 11.6 1.06% 4.3 1.35% 0.2
c7 0.00% 23.1 0.00% 5.2 — — 4.23% 3.5
cs 0.27% 8.6 0.09% 6.1 3.28%  18.4 2.34% 7.3
c9 1.40% 15.6 0.14%  983.6 8.73%  27.2 3.39% 26.6
c10 1.79% 52.0 1.58% 40.3 13.22%  52.4 7.80% 57.3
[ Clustered problems ]
Prob Tabu Simulated Neural Ant
rob- Search [21] Annealing [19] Networks [14] System
C11 0.14% 6.3 12.85% 4.4 5.79% 4.2 2.91% 6.2
c12 0.00% 1.2 0.79% 0.8 0.68% 1.7 0.05% 10.1
13 0.59% 2.0 0.31% 76.2 4.37%  31.3 3.20% 4.3
Cc14 0.02% 9.4 2.73% 5.0 1.55% 8.5 0.40% 3.1
D 0.77% 2.09% 5.30% 4.43%
Sun Sparc 4 VAX 8600 VAX 8600 Pentium 100

Table 8.6 Deviation and Run Times for several Metaheuristic Approaches

[21]*2) outperforms all other metaheuristics with an average deviation of 0.77%.
The ant system (4.43%) performs not as good as Osman’s simulated annealing

12 A comparison on basis of run times on different machines is not perfectly meaningful. To
ensure maximum comparability we did not include their parallel implementation.
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approach [19] with 2.09% but better than Ghaziri’s neural networks approach
[14], where the average deviation was 5.30% with only 12 out of 14 problems
tested. Run times (given in CPU minutes in Table 8.6) for all algorithms are
more or less similar and vary with the problem size in a range from approxi-
mately one minute for the smallest to approximately one and a half hours for
the largest problem.

8.6 DISCUSSION AND CONCLUSION

The presented contribution shows the application and the improvement of an
ant system algorithm to the VRP. The computational results confirm the posi-
tive experiences made with the ant system by applying it to the TSP [1, 11, 23].
Although some very good solutions for the VRP instances were obtained, the
best- known solutions for the fourteen test problems could not be improved.
For practical purposes deviations up to 5% are more than acceptable as uncer-
tainty about travel costs, demands, service times etc. makes perfect planning
impossible. As the ant system can compete with other vehicle routing meta-
heuristics in terms of run times, the presented approach is an alternative to
tackle VRPs.

Tabu Search performs much better, but nevertheless the results for the ant
system also indicate that there still is much potential for improvement. The
superiority of tabu search for VRPs can be explained by two facts: tabu search
is an excellent method that has been studied and improved a lot since its
introduction, and, much more VRP related research has been done on tabu
search (cf. [13, 19, 21, 22, 24]) than on any other method. Therefore, we
are certain that future work on the ant system approach will help to further
improve its quality for vehicle routing, even though our current version can not
yet compete with the best tabu search algorithms.

Primarily, a more detailed analysis of parameter values is necessary. A
metaheuristic could be used to guide the search through the parameter space.
Also an automatic adjustment of the parameters done in Evolution Strategies
might be of use for the ant system. In addition to that, more elaborated local
search procedures exchanging customers not only within but also among tours
should be considered. Another very interesting aspect is the use of candidate
lists. In the current version of the ant system all feasible customers have the
chance to be selected. For many of them the probability of being selected is
very low because of large distances, low trail levels or both. Concentrating only
on the more promising candidates should yield better results. Moreover, the
algorithm seems to be well suited for parallel implementation [2].

A more radical change of the existing algorithm would be to use the ants
only to cluster the customers and subsequently, to apply a local search to find
good tours among them. A similar idea using a genetic algorithm as a cluster
builder has been proposed in [17].

Besides these methodological considerations, additional modifications of the
algorithm to extensions of the VRP, e.g., multiple depots or problems with time
windows are of interest.
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