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Low Resolution Face Recognition Across
Variations in Pose and lllumination

Sivaram Prasad Mudunuri and
Soma Biswas, Senior Member, IEEE

Abstract—We propose a completely automatic approach for recognizing low
resolution face images captured in uncontrolled environment. The approach uses
multidimensional scaling to learn a common transformation matrix for the entire
face which simultaneously transforms the facial features of the low resolution and
the high resolution training images such that the distance between them
approximates the distance had both the images been captured under the same
controlled imaging conditions. Stereo matching cost is used to obtain the similarity
of two images in the transformed space. Though this gives very good recognition
performance, the time taken for computing the stereo matching cost is significant.
To overcome this limitation, we propose a reference-based approach in which each
face image is represented by its stereo matching cost from a few reference
images. Experimental evaluation on the real world challenging databases and
comparison with the state-of-the-art super-resolution, classifier based and cross
modal synthesis techniques show the effectiveness of the proposed algorithm.

Index Terms—Face recognition, stereo matching, multidimensional scaling,
low resolution, super resolution
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1 INTRODUCTION

THE increasing use of surveillance cameras for addressing security
concerns has led to increased demand for fully automatic and
robust face recognition systems. The images captured by the sur-
veillance cameras usually have poor resolution, uncontrolled pose
and illumination conditions which makes the task of recognizing
these faces extremely challenging. Significant attention has been
devoted to addressing one or more of the different challenges like
poor illumination, non-frontal pose, expression, etc. [1], [2], [3], [4].
But addressing all these challenges together is essential in many
applications like recognizing faces from surveillance cameras.
Recently, a learning-based approach has been proposed for match-
ing a low-resolution (LR) non-frontal probe image under un-
controlled illumination to frontal high-resolution (HR) gallery
images [5]. The approach performs quite well in matching faces
across pose, illumination and resolution, but it requires the loca-
tions of several landmark locations (like corners of eyes, nose and
mouth etc.) both during training and testing, which is difficult spe-
cially for low-resolution images under non-frontal pose.

The proposed approach can be considered as an improvement
over [5] as it does not require localizing facial landmarks in non-
frontal face images at low resolution during testing. It is only dur-
ing the training stage that we need locations of different fiducial
points to learn the transformation matrix. There is another major
difference from the approach described in [5]. In the proposed
approach, a common transformation matrix for the entire face
region that can map both low-resolution probe images and high
resolution gallery images into a common space is learnt using
multi-dimensional scaling method during training. SIFT descrip-
tors computed from the facial image are used as the descriptors of
the face. During testing, the images are aligned based on detected
eye locations and then high resolution gallery and low resolution
probe images are transformed to a common output space using the
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learned transformation matrix. Stereo matching cost of the trans-
formed images is used to compute the distance between the two
images across pose variations. The above approach gives very
good recognition performance, but it requires significant computa-
tion time since the stereo cost has to be computed between the
probe and all gallery images separately.

In this work, we also develop a reference-based face recognition
system to make the proposed method computationally efficient
without affecting the recognition performance significantly. A ste-
reo matching algorithm has been proposed in [6] for matching
faces across pose, but in this effort, we extend it to a learning-based
stereo-matching algorithm for matching faces across all the varia-
tions together, namely pose, illumination and resolution.

Extensive experiments are performed to evaluate performance
of the proposed algorithms on Multi-PIE dataset [7], Surveillance
Cameras Face Database [8], Multiple Biometric Grand Challenge
(MBGC) database [9] and Choke Point database [10]. The main con-
tributions of the paper (and differences from related approaches [5],
[6]) are given below:

e During training, the transformation is learned for the entire
face image as opposed to selected fiducial locations as in [5].

e A completely automatic learning-based stereo matching
approach for matching facial images across illumination,
pose and resolution.

e A computationally efficient reference-based approach for
reducing the computational cost of the approach.

e  Extensive experiments are conducted on real world chal-
lenging datasets to evaluate the efficacy of the proposed
approaches.

The differences will be highlighted in the respective sections in the

paper.

2 RELATED WORK

In this section, we provide pointers to the relevant papers in the lit-
erature. A 3D morphable model based approach for estimating the
shape and texture information is presented in [11] for matching
faces across pose and illumination variations. Ho and Chellappa [1]
propose a pose invariant face recognition algorithm by using Mar-
kov Random Fields. A probabilistic model based approach which
can model the appearance changes by considering the local sub
regions of faces for different views is proposed in [12]. Castillo and
Jacobs [2] propose a window based dense stereo matching which
can address large pose variations. Chai et al. [4] propose a pose
invariant face recognition method by using patch based rectifica-
tion. Here virtual frontal views are generated from the given non-
frontal view by estimating an approximate linear transformation
between the non-frontal and frontal face. Set-Theoretic Characteri-
zation based approach is proposed in [13] to address the degrada-
tion due to blur, pose and illumination. A pose normalization
algorithm to handle different poses is described in [14]. A metric
learning based approach that learns a discriminative latent space
by using the information of both positive and negative pairs is
described in [15]. Zhu et al. [16] propose a transductive subspace
learning method for matching NIR-VIS facial images as a task of
heterogeneous face matching. Lu et al. [17] propose a novel neigh-
borhood repulsed metric learning method for the task of kinship
verification. A Gaussian mixture model and convex optimization
based metric learning approach is presented in [18].

A detailed discussion of emerging challenges involved in recog-
nizing low-resolution facial images is presented in [19]. Baker
and Kanade [20] propose an approach for learning the resolution
enhancement function for frontal facial images. Nishiyama et al.
[21] propose a clustering based face recognition algorithm to recog-
nize blurred faces. Zou et al. [22] address the problem of recog-
nizing low-resolution facial images by learning the relationship
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between the high-resolution and low-resolution image spaces in
the training phase. A linear regression model is used to learn the
relationship by imposing different constraints, and a discrimina-
tive constraint is also developed for machine-based recognition
purposes. The algorithms that learn coupled mappings which can
map low resolution probe images and high resolution gallery faces
into a unified latent space to improve the recognition accuracy can
be found in [23] and [24].

The idea of reference faces is also related to the simile classifiers
proposed in [25] that can measure the similarity of the given face
with some reference faces. In [25], the facial part of the probe image is
classified as being similar to one of the reference faces, while in the
proposed approach, the relative distance between the probe image
and all the reference faces is used as the feature representation.

3 PROPOSED APPROACH

Here we describe in detail the proposed approach for matching
facial images across pose, illumination and resolution. The frame-
work consist of two stages, namely the training stage for com-
puting the transformation matrix and the testing stage. The
transformation matrix is learned in the training stage from HR
frontal and LR non-frontal training images. During testing, the gal-
lery and probe images are transformed into the common space and
then stereo cost between two transformed images is computed
which gives the distance between the two images.

3.1 Learning the Transformation Matrix

During training, high resolution frontal images and low resolution
images under non-frontal pose are used to learn the transformation
matrix. Each face in the training data is represented by a collection
of local descriptors computed at fiducial locations which are
extracted using STASM [26] under manual supervision to correct
any isolated gross error in localization of fiducial point(s). In this
work, we compute rootSIFT [27] descriptors (termed as SIFT in the
remaining paper) at 15 fiducial locations in the interior of the face
as the face representation.

Let the transform g be defined by g: " — R?, where n is the
dimension of input feature vectors and d is the dimension of
the transformed space. The mapping g = (g1,02,..-,94)" can be
expressed as a linear combination of & basis vectors as given below

k
gi(F;W) = Z’U’jil//j(f)~, 1

=1
where ;(f); j = 1,2,..., k is a linear or non-linear function, where

f is the input feature vector and W is the transformation matrix
whose elements are to be computed. Our goal is to find a transform
which satisfies the following two criterion: (1) distance between the
feature vectors of the HR and LR images (denoted by f; and f;
respectively) in the transformed space should be close to the dis-
tance if both the images were captured under the same controlled
imaging conditions (denoted by d;;); and (2) the distance between
feature vectors of the same subject in the transformed space is
small as compared to that between different subjects to ensure dis-
criminability. To achieve this, we find the transformation W by
minimizing the following objective function

JW) = M1(W) + (1 = N)J2(W), 2)

where J;(W) is the distance preserving quantity and J»(W) is the
discriminability term. The parameter A determines the relative
importance given to the distance preserving and class separability
functions. The first term is given by
N N

(Dij(W) = dyy)*, ®3)
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Fig. 1. Flowchart of the training and testing stages of the proposed approach.

where D;; is the distance between transformed features of ith HR
image and jth LR image. In this work, the second term J»(W)
which ensures class separability is given by [28]

N N
J2W) =3 > 8(wi, ) D3 (W), (4)
=1 j=1

Here §(w;,wj) =1 if w; = w; and 0 otherwise. The formulation
above is similar to [5] with the following main differences:

e  The learned transformation matrix W is applicable to fea-
tures extracted from any part of the face as opposed to
only some selected fiducial locations. So during testing, it
can be used to transform the features from the entire face.
This is required since we do not detect specific fiducial
locations of the face during testing.

e Dimensionality reduction techniques like PCA are proba-
bly not appropriate in the proposed approach since corre-
spondence between the fiducial locations is not assumed/
maintained in the testing stage.

Finally, the transformation matrix W is computed by solving
Eq. (2) using iterative majorization algorithm [28].

3.2 Testing

In the testing phase, the SIFT descriptors are computed at every
point of the probe and gallery images (on a regular grid as shown
in Fig. 1) which are then transformed to the common space using
the transformation W learned in the training stage.

Let f = [fi, s, ..., fi] € R'® be the SIFT descriptors at M facial
grid locations, then the transformed features are given by

p' = WTy(f;); i=1,...,M. 5)
The distance between a gallery and a probe image is then computed
by finding the stereo matching cost between the two images. In the
proposed approach, the stereo cost is computed between trans-
formed SIFT features of each row of HR frontal gallery and LR non-
frontal probe image in the learned discriminative space. The dense
four state stereo algorithm proposed by Criminisi et al. [29] is used
to compute the stereo matching cost in the transformed space. We
provide some details of the algorithm for completion.

The stereo algorithm includes four cumulative cost matrices
namely My, Mg,, My, and Mpg,,. Among these four cost matrices,
M;, and Mg, are designed to capture the occlusions and My, and
Mp,, are designed to capture the matching in left and right images
respectively. The entries in all the four matrices are initialized to
+00 except in the right occluded cumulative cost matrix Mg, where:

Mpo(i,0) = ie;  i=0,1,2,....... (q—1). ©)
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Where ¢ is the number of features computed from one row of
the input image. The four cumulative cost matrices are com-
puted by using dynamic programming algorithm as given in the
following recursion:

Mpo(l,r—1) 4+«
My, (l,7) = mind My, (l,r—1) + B ()
1\{Rm(ly"' - 1) + ﬁ

Mpo(Lr—1)+ 8
IVILm((LT - 1) + Y
Mg (l, 7 — 1)
Mpo(l,r — 1) + B.

I\/ILIIl(l7 T) = 1\4(1, 7") + min (8)

Here M(l,r) is the cost of matching the transformed feature
descriptors corresponding to the /th and rth grid locations in the
left and right scan lines respectively. Here, [ and r varies from 0 to
q — 1. Mg, and Mg, are symmetric. The matching cost M(/,r) is cal-
culated as follows:

M(1, ) _1 >sca ll (Pll+5 - I_’ll) - (Pz+5 - f’%) I ©)
T2 scallpls — P A Xsea PR — P2
se IPis — Py sc IPrs — Ps

where () is considered as 3 x 3 grid patch around each feature loca-
tion (I,7). The superscript 1 and 2 denotes the two images whose
stereo cost is being computed. p,, is transformed SIFT descriptor
computed at the kth grid location. The mean of a patch is denoted
with the bar. In our experiments, the different parameter values
used area = 0.5, =1, ,B/ = land y = 0.25. We have experimented
with different values of these parameters and have found the algo-
rithm to be quite robust to the parameter values.

Suppose [; and [, are two scan lines in two images, then the cost
of matching these two scan lines is Cost(l1,l2) = Mg,(¢ — 1,9 — 1).
Hence the cost of matching the probe image I; and gallery image I,
is given by:

N
Cost(I1,I,) = > Cost(p}, p?), (10)
i=1

where p} and p? are the transformed feature vectors corresponding
to the ith scan line in the probe image and gallery image respec-
tively and N, is the number of scan lines. Finally, the distance
between the two images is computed as follows:

Distance(I, I) = min(Cost(I;, L), Cost(Iz, Iy)). (11)

This is done since one does not know which image is left and
which one is right in practice. A flowchart of the training and test-
ing stages of the proposed approach is given in Fig. 1.

4 REFERENCE BASED FACE RECOGNITION

The algorithm presented above in Section 3 gives very good rec-
ognition performance as will be shown in the experimental sec-
tion, but the time required for computing the distance of the
probe image with the gallery images is considerably high. The
main computation time is required in computing the stereo cost
between two images. Given that a probe image needs to be com-
pared against all gallery images, stereo matching cost has to be
computed for each gallery image separately that makes the pro-
cess both slow and non-scalable. In this section, we describe a
reference-based face recognition system that aims at reducing
the computation time of the algorithm without significantly
affecting the recognition accuracy. In this algorithm, we select a
set of reference faces and every other face (from gallery or
probe) is represented by its distance relative to this set of refer-
ence faces. There is no overlap between the reference subjects
with the subjects in the gallery and probe data.
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Fig. 2. Proposed reference based face recognition algorithm.

The approach using reference faces also consists of a training
stage and a testing stage. In the training stage, the training HR and
LR facial images are used to compute the transformation matrix W
as in Section 3. The reference faces are HR and captured under
good imaging conditions like the gallery images. In the testing
stage, the features computed from the probe image, all the gallery
images as well as the reference images are transformed to a com-
mon discriminative space using the matrix W learned during train-
ing. Note that since the gallery and reference images do not
change, they can be transformed a priori to save time during test-
ing. Each transformed gallery image is then represented by its rela-
tive distance from the transformed reference images. Let f; be the
feature representation of the ith gallery face and ri,1,...,1n,
be the feature representation of the N, reference faces. Then
the gallery face is represented using the feature vector
E=[&1,%2,-.-, &N, f}T where the entries in the feature vector is the

stereo cost between the image and the reference images given by

& = Cost(WIy(£), Wiyn(xy));  5=1,2,...,Npy.  (12)

This cost is also computed offline and so does not affect the compu-
tation time during testing. Each transformed probe image is simi-
larly represented using the stereo cost from the set of transformed
reference faces as in (12). A flowchart of the reference-based
approach is shown in Fig. 2.

4.1 Computational Analysis

In the approach proposed in Section 3, the probe image had to be
compared with all the gallery images, so N, number of stereo
matching computations will be required, where N, is the number
of gallery images. But in the reference-based approach, the number
of stereo matching computations required for a probe image is
N, which is the number of reference images. So if N,.; < Ny, the
computation time for the reference based method will be lower
than the approach in Section 3.

We perform an experiment on the Multi-PIE data with 200 HR
frontal gallery images and 1,000 LR non-frontal probe images
(Pose 04_1) under different illumination conditions. The number of
reference images is chosen as 50. It is observed from the Cumula-
tive Match Characteristic (CMC) curve in Fig. 3 that though the
rank-1 performance of the reference-based approach is not very
good, the performance improves quite rapidly for higher ranks.
The top ranked gallery image is the correct identity of the probe
only 55 percent times but the correct identity is in the top 10 ranks
for over 90 percent of probe images.

Based on these observations, we propose a modification of the
reference-based approach. Using the proposed reference-based
approach, we obtain distances between the probe and the gallery
images. Based on these distances, the top K gallery images are
picked and direct stereo matching (as described in Section 3) is per-
formed between them and the probe image to obtain a better
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Fig. 3. Cumulative match characteristic curves for the reference-based approach
and the modified reference-based approach that re-ranks the top ranked gallery
images by computing the stereo cost against the probe image.

estimate of their distance leading to better accuracies at top ranks
as shown in Fig. 3. K is set to 10 for this experiment. With this mod-
ification, the rank-1 accuracy improves from 55 to 80 percent at
the expense of 10 extra stereo cost computations. As expected, the
two CMC curves exactly overlap at later ranks. In this modified
approach, the total number of stereo matching computations
required is N,.; 4+ K, and if this is less than N, then the computa-
tion required will be lower than the approach in Section 3. Fig. 4
illustrates the improvement in performance using the modified ref-
erence-based approach. For both query images (left), the top row
shows the top 10 matches returned by the reference based
approach and the bottom row shows the re-ranked results after
computing the stereo matching cost with each of these 10 matches.
The image with green bounding box shows the correct match.

5 EXPERIMENTAL RESULTS

Extensive experiments are conducted on three datasets namely,
Multi-PIE dataset [7], Surveillance Cameras Face Database [8],
Multiple Biometric Grand Challenge database [9] and Choke Point
database [10] to demonstrate the applicability of the proposed
approach. We have used Active Shape Model-based C++ software
library called STASM [26] which is freely available to detect feature
locations automatically. The detections were manually verified and
the incorrect locations were corrected. Note that the detected land-
marks are required during training only. During testing, only the
locations of the eyes are required to align the facial images.

5.1 Experiments on Multi-PIE Dataset

The Multi-PIE dataset [7] contains face images of 337 subjects that
are captured under different illumination conditions and view
points in four recording sessions. The probe images with four
different poses namely pose 04_1, 050, 14.0 and 13_0 as labeled in

B
B

Fig. 4. Modified reference-based approach. For each query (left), top row shows
the top 10 matches returned by the reference-based method, bottom row shows
re-ranked result using the proposed modification.
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TABLE 1
Rank-1 Recognition Performance for Four Different Probe Poses,
Averaged over the Different Gallery llluminations

Method Pose13_0 Pose14_0 Pose05_0 Pose 04_1
HR-LR (baseline) [5] 49.15% 69.87% 59.04% 35.57%
HR-LR (MDS) [5] 63.01% 76.35% 72.83% 56.32%
Stereo Baseline [6] 76.53% 85.57% 84.53% 75.36%
Semi-Coupled [30] 64.02% 72.37% 68.10% 62.93%
Dictionary Learning [31]  63.41% 72.08% 66.91% 62.37%
LMNN (min) [32] 36.74% 52.18% 40.91% 30.35%
LMNN (mean) [32] 58.10% 72.95% 62.11% 50.41%
LMNN (max) [32] 67.73% 80.64% 72.19% 59.71%
LSML (M) [33] 82.98% 90.72% 88.69% 71.36%
LSML [33] 90.51% 93.68% 89.17% 83.86%
SFRD + PMML [34] 77.17% 88.34% 92.72% 75.97%
GMA - LPP [35] 68.42% 78.77% 80.32% 70.13%
GMA - MFA [35] 72.40% 82.29% 84.77% 73.68%
CrossPose [36] 54.21% 73.57% 70% 60%
Proposed approach 88.44% 95.69% 94.81% 86.43%
in Section 3

Proposed Reference 80.53% 88.77% 86.27% 80.16%

Multi-PIE dataset are used in our experiments. The high-resolution
images in frontal pose are used as gallery images. The resolution of
the gallery images used in our experiments is 36 x 30 while the
resolution of the probe images used is 18 x 15 (scale factor of 2).

Recognition experiments are conducted across illumination
conditions with images from one illumination forming the gallery
while images from a different illumination forming the probe set.
In our experiments, we use five different illumination conditions.
The experiment is repeated for different pairings of illumination
conditions. Reported recognition accuracy is the average rank-1
recognition performance averaged over the different illumination
conditions.

Fifty randomly chosen subjects are used for training and the
remaining subjects are used for testing. There is no overlap
between the training and test subjects. The value of A is set to 0.9
and d, the output dimension of MDS is set to 100 for all the experi-
ments. The kernel mapping v/(x) is fixed to z to emphasize the per-
formance of proposed approach, but other more appropriate
mapping can also be used.

5.1.1  Performance: Different Pose, lllumination, Resolution

We start with reporting the recognition performance of the pro-
posed approach for matching images which differ in pose, illumi-
nation and resolution.

Comparison of the proposed approach with the MDS based
approach in [5] and stereo matching algorithm in [6] are also re-
ported in Table 1. The source codes in the corresponding author’s
website [37], [38] are used for generating the results. In Table 1, HR
- LR (baseline) indicates using SIFT descriptors but without learn-
ing the transformation in [5]. For the stereo baseline approach [6],
first bilinear interpolation is applied to the LR probe images to
make the resolution same as the HR gallery images before stereo
matching cost is computed. Had the probe images been captured
under the same pose and resolution as the gallery images , the per-
formance (HR-HR) would have been 93.55 percent. The proposed
approach not only performs considerably better than the base-
line methods [5], [6], the performance is very close to the HR-
HR performance. For the reference based approach, the number
of reference images is taken as 50. The performance of the refer-
ence-based approach is slightly worse than the approach pro-
posed in Section 3, it is still considerably better than the baseline
approaches. Though the LSML algorithm performs better than
our reference approach, LSML requires the locations of several
landmark points (like corners of eyes, nose and mouth etc.) both
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during training and testing, which is difficult especially for low-
resolution images under non-frontal pose.

5.1.2 Comparison: Metric Learning Approaches

We also evaluate three state-of-the-art metric learning/classifier
based algorithms: (1). Distance metric learning approaches such as
Large Margin Nearest Neighbor (LMNN) [32] have been success-
fully used for recognizing facial images [39]. We experimented
with different settings of validation, number of nearest neighbor
and maximum number of iterations parameters and the minimum,
maximum and mean value of rank-1 recognition performance are
reported (Table 1). (2). Large Scale Metric Learning (LSML) [33]
method that learns a metric from equivalence constraints based on
the statistical inference perspective. The case M,_, represents that
the metric is learned from Mahalanobis distance of the similar
pairs. (3). Pairwise Multiple Metric Learning (PMML) method [34]
that integrates the face region descriptors from different regions of
facial images. The codes available in the author’s web pages are
used to generate the results for the three metric learning app-
roaches reported in Table. 1. The proposed approach outperforms
all the three approaches with the exception of LSML for one pose in
which the proposed approach performs slightly worse.

5.1.3 Comparison: Cross-Modal and Dictionary Learning

Recently, cross domain image synthesis and recognition methods
have demonstrated promising performance in many applications.
The cross domain algorithms address the recognition/classifica-
tion task across different domains. We evaluate the methods pre-
sented in [30], [31], [35] and [36]. The algorithms [30] and [31]
jointly solve the coupled dictionary and common feature space
learning to synthesize the cross-domain images and perform the
recognition task. The Generalized Multiview Analysis (GMA) [35]
approach arrives at a single linear subspace by solving a joint,
relaxed quadratic constrained quadratic program (QCQP) over
different feature spaces. The algorithm in [36] handles the prob-
lem of recognizing cross pose facial images by modeling a regres-
sor with a coupled bias variance tradeoff. We use the codes
available in respective author’s webpage and evaluate each algo-
rithm with different parameter settings and the best results are
reported in Table 1. The proposed approach outperforms all these
approaches for all poses.

5.1.4 Comparison: Super-Resolution Approaches

One of the most commonly used technique for matching a LR
probe image with HR gallery image is to use super resolution on
the LR probe images before matching is performed. We compare
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the proposed approach with two state-of-the-art SR techniques
SR1 [40] and SR2 [41]. In SR1 [40], kernel ridge regression method
is employed to learn a map from LR images to the desired HR
images. In SR2 [41], two different dictionaries are maintained to
train the LR and HR images, and the sparse representation of the
LR images is used to get the corresponding HR image. The codes
from the respective author’s websites are used to generate the
results in our experiment.

From Fig. 5, it can be observed that the proposed approaches
significantly outperform the compared approaches for both probe
poses and SR techniques.

5.1.5 Recognition Across Different Probe Resolutions

In this experiment, we analyze the performance of the proposed
algorithm for wide range of resolutions of probe images. The gal-
lery images are maintained at a resolution of 36 x 30 and the reso-
lution of probe images are varied. We use three different probe
resolutions, 15 x 12, 12 x 10 and 10 x 9. LR probe images of pose
05_0 are used for this experiment.

The rank-1 recognition performance of the proposed algorithms
and MDS-based algorithm in [5] are presented in Fig. 6. We see
that the proposed algorithms perform significantly better than the
compared approach for all the probe resolutions.

5.1.6 Advantage of the Reference-Based Approach

We study the recognition performance and computational advan-
tage of the proposed reference based approach by varying the
number of reference images.

Table 2 shows the rank-1 recognition performance and run-
times of the proposed reference-based approach for different num-
ber of reference images. This experiment is conducted on the
Multi-PIE data with the same experimental setting as the previous
experiments for probe pose 04_1. For a probe image, after the simi-
lar gallery images are returned by the reference-based approach,
the stereo matching cost is computed between the probe image
and the top 10 similar gallery images which helps to significantly
improve the rank-1 recognition accuracy.

TABLE 2
Rank-1 Recognition of the Modified Reference-Based Algorithm
with Varying Number of Reference Images for Pose 04_1

No. of ref. images Rank-1 Accuracy Time (seconds)

10 74.75% 14
20 78.85% 16
30 79.81% 19
40 79.92% 21
50 80.16% 24
Proposed Section 3 86.43% 101
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TABLE 3
Rank-1 Recognition of the Proposed Approach and Comparison
with Existing Algorithms on SCFace and MBGC Databases

Method SCFace [8] MBGC [9]
MDS HR-LR [5] 61.14% 39.48%
LSML [33] 59.25% 49.15%
GMA-MFA [35] 27.0% 19.21%
Proposed Approach 69.45% 50.57%

It is observed that even with as few as 20 reference images, the
proposed reference-based approach gives noticeable better perfor-
mance compared to many of the existing algorithms that are
reported in Table 1. Obviously there is a trade off between the
number of reference images used and the recognition accuracy
obtained. But the computational time decreases significantly
from 101 seconds to just 16 seconds with this modified reference-
based approach.

5.2 Experiments on Surveillance Camera Dataset

We now evaluate the proposed approach on real surveillance qual-
ity data obtained from the Surveillance Cameras Face Database [8].
The dataset contains images of 130 subjects captured in uncon-
trolled environment using five different video surveillance cam-
eras, while the gallery images were taken using high-quality
camera. We use the same experimental setting as used in [5], in
which we use all the images from all the five surveillance cameras
(thus there are 650 images).

As in [5], we randomly pick 50 subjects for training and use the
remaining 80 subjects for testing (thus there are a total of 400 probe
images) with no overlap between the train and test subjects. The
experiment is repeated 10 times with different random sampling of
the subjects. The Rank-1 accuracy of the proposed approach and
comparisons with several other approaches for this experiment
are shown in the second column of Table 3. We see that even for
real surveillance quality data, the proposed approach performs
significantly better than the other approaches.

5.3 Experiments on MBGC Database
The proposed algorithm is also evaluated on Multiple Biometric
Grand Challenge [9] database to demonstrate its efficacy in a real
world surveillance scenario. The database includes frontal images
of 147 subjects and videos of the same subjects where each user is
walking or performing some activity. The frontal images are taken
as gallery images and the faces extracted from videos of corre-
sponding persons are considered as probe images in our experi-
ment. Faces present in these videos are very different from the
gallery images in terms of variations due to resolution, illumina-
tion and pose. A few sample images are shown in the Fig. 7.
Gallery consists of single image per subject and probe set
consists of five images per subject in our experiment. A total of
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Fig. 7. MBGC [8] data- Top row: Sample gallery images. Bottom Row: Sample
probe images of the corresponding subjects.

70 randomly selected subjects are used for training and the remain-
ing subjects are used for testing, thus there is no overlap between
the training and test subjects. The experiment is repeated 10 times
with random selection of training and test subjects and the average
Rank-1 accuracy is reported. Experimental results of proposed
algorithm and comparison with state-of-the-art approaches are
reported in the third column of Table 3 to demonstrate the effec-
tiveness of our algorithm.

5.4 Experiments on ChokePoint Database

The proposed algorithm is also evaluated on the Choke Point data-
base [10] to further demonstrate its efficacy in real world sur-
veillance scenarios. We have followed the same protocol as that
of Bhatt et al. [42] for this experiment. As in [42], images of
Multi-PIE dataset are used for training and all the 29 subjects in
the Choke Point database for testing. We repeated our experi-
ment five times by randomly selecting the probe images each
time and the mean accuracy is reported in Table 4. The rank-1
accuracies of all the other approaches that are reported in Table 4
are directly taken from [42]. A few sample gallery and probe
images of the dataset are shown in Fig. 8. We see that for this
dataset, the proposed approach performs significantly better
than all the other approaches.

6 DiscussioN AND CONCLUSION

We have presented a novel face recognition algorithm for matching
faces across different pose, illumination and resolution. A transfor-
mation matrix is learned for the entire image in the training stage
using multidimensional scaling. The cost of stereo matching
between the gallery and the probe image in the transformed space
is taken as the distance between the two images for computing the
recognition performance. We also proposed a reference based face
recognition algorithm for reducing the computational requirement.
The computational time of the proposed approach is higher as
compared to the other approaches. As part of our future work, we
would like to explore recent fast and efficient stereo matching algo-
rithms [43] that can potentially decrease the time required for the
proposed approach. Having said that, the main advantage of the
proposed approach is that there is no need to mark any fiducial
locations during testing. All the other approaches in Table 1
require fiducial locations to be marked on the low-resolution

TABLE 4
Rank-1 Recognition ( % ) of the Proposed Approach and Comparison with Existing Algorithms on ChokePoint Database [10]
Resolution Algorithm
HR/ HR/ HR/LR HR/ CTL CTL P d
+ + ropose
Gall Probe LPQ SIFT E1 E2 Fusion MDS crL LR IR TL LR cors
allery robe Q usion TL L LPO+ CT MDS COTS
(LPQ) (SIFT) (SIFT)
32x32 354 326 412 376 447 454 482 46.6 43.4 47.1 40.4 18.5 47.8 50.9 62.7
48 x 48 24 x24 232 204 274 248 29.5 302  33.1 31.6 29.1 32.8 27.1 11.8 32.6 37.2 60.6
16 x16 176 145 21.8 19.6 241 263 283 25.8 23.6 26.5 22.7 4.7 27.5 31.6 54.3
30 %32 24 x24 204 148 234 187 24.3 28.6  31.6 26.2 25.6 29.4 21.3 16.4 30.8 35.4 58.4
x 16 x16 14.6 9.6 173 134 19.6 219 231 21.1 19.2 21.8 15.6 3.5 22.5 26.0 56.8
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Fig. 8. Example facial images of Choke Point database [10]. Top row: frontal gal-
lery images, second row: corresponding probe images.

images during testing, which is a challenging task. The usefulness
of our algorithms is justified with experiments conducted on the
Multi-PIE dataset, SC Face database, MBGC database and Choke-
Point database in which very good recognition performance is
obtained under very low resolution of probe images and wide
range of pose and illumination conditions.
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