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a b s t r a c t 

NAND based solid state storage devices are almost ubiquitously used in safety-critical embedded devices, 

and recent advances have demonstrated RAID architectures specific to solid state storage devices resulting 

in increased data reliability, with architectural enhancements to solve the age convergence problem. How- 

ever, these techniques require devices to be taken off-line while components are replaced—consequently 

these devices are of limited use in hard real time systems. There are further real time issues in that 

the conventional architectures ignore other characteristics of solid state devices such as garbage collec- 

tion and meta data management. In this paper we investigate techniques that support the replacement 

of aged devices in the array in such a way that we provide continuous system reliability. We also im- 

prove the performance overhead of the reconstruction process using a novel data migration policy. The 

techniques are implemented and tested in a trace-driven simulator, and results demonstrate that average 

I/O response time is improved by up to 39% with improvement by up to 45% in its standard deviation, 

overheads in terms of device replacement time are negligible, and read performance is improved by an 

average of 8%. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Many embedded systems, including those that are safety crit-

cal, have to observe strict constraints in terms of shock resis-

ance, energy consumption, physical size, and other factors. Mag-

etic hard discs are typically not well suited to systems with these

onstraints due to their mechanical nature—however solid state

torage (SSD), otherwise known as flash memory, enjoys many ad-

antages. However, perhaps the single most important issue when

sing SSD devices in high reliability environments is the fact that

hey physically wear out over time—normally related to the num-

er of times parts of the device are erased—meaning that data

tored on the device will become unreliable over time. This fail-

re characteristic is different to traditional magnetic mediums that

ypically fail non-deterministically. 

One approach to enhance reliability in the case of wear-out is

he use of Error Correction Codes (EEC). This is parity-style data

hat is stored in the meta data of each page of memory, and is used

o cross-check, or repair, the data it relates to at the point where

ata is read. However there are limits to how much it can improve

eliability as the potential to repair is limited. Where capacity of

torage is an issue, multiple level cell (MLC) technology may of-

er benefits over single level cell (SLC) devices. However MLC de-
∗ Corresponding author. 
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ices suffer from greater unreliability—particularly when the de-

ice ages—than SLC due to a lower erase endurance. MLC also do

ot lend themselves to ECC techniques as the size of meta data

reas is limited. 

Recent advances in storage technology have applied Redundant

rray of Independent Disk (RAID) to SSD storage in order to im-

rove reliability and data integrity when a single device or com-

onent fails. Common RAID techniques such as RAID 4 and RAID 5

old parity data to reconstruct original data in case of block errors.

owever, the usage of these techniques in SSD suffers the problem

f wearing out all the devices simultaneously. 

In previous work a novel RAID-based architecture was pre-

ented to enhance the reliability of an SSD storage system [1] ,

itigating this problem by guaranteeing wear imbalance between

omponents in the array. This is done using two primary tech-

iques. The first is an uneven parity distribution—which refers to

atios of the parity data across devices of the array—that ensures

rases across components are distributed unevenly, and the sec-

nd is a device copy/swap algorithm that moves data around and

anages lifespan as components reach endurance limits. The limi-

ation of this architecture is that this copy/swap operation requires

he array to be taken off line and so whilst this mechanism sig-

ificantly enhances reliability, it restricts is usage in hard real time

ystems as it is not able to serve requests during the component

eplacement period. Furthermore, it does not consider flash spe-

ific operations such as garbage collection and meta data manage-

http://dx.doi.org/10.1016/j.micpro.2016.11.012
http://www.ScienceDirect.com
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2016.11.012&domain=pdf
mailto:aam19@le.ac.uk
http://dx.doi.org/10.1016/j.micpro.2016.11.012


462 A .A . McEwan, M.Z. Komsul / Microprocessors and Microsystems 52 (2017) 461–469 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. System architecture block diagram. 
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ments, both of which may affect the real time characteristics of a

system. 

The contribution of this paper is an investigation into several

novel techniques that may be incorporated into an SSD RAID that

improve the efficiency of the replacement process for hard real

time applications—proactive hot swapping, data migration that co-

ordinates operations with a garbage collector, and a parity redistri-

bution mechanism. To utilize the benefits of hot swapping, a semi

hybrid RAID mechanism is also introduced that enhances perfor-

mance when there is no active device replacement process. 

The paper is structured as follows: in Section 2 we present

motivation and background for this work. Section 3 presents

the architectural design of the system. Section 4 presents

proactive hot swapping, Section 5 presents data migration,

and Section 6 presents the parity redistribution mechanism.

Section 7 presents the semi hybrid RAID configuration. Experimen-

tation and analysis are given in Section 8 , and we draw some con-

clusions and identify areas of future work in Section 9 . 

2. Motivation and related work 

Early works in the area of SSD RAID storage include [2] , which

explores the viability of using RAID architectures as a reliability en-

hancement. Age convergence mechanisms—the process by which

parity is distributed and thereby component ageing managed—

ere further developed in [3] . The contribution of these works was

to minimise risk of simultaneous device failure by unevenly dis-

tributed parity techniques. However these works do not take into

consideration real time and performance related issues of flash ar-

rays. 

Mir and McEwan [4] describes the implementation of a flash

management framework in synthesizable Verilog that was used

in a series of experiments exploring out of order execution, dy-

namic scheduling, and multi chip parallelism. The framework was

expanded in [5] to allow for simulation and experimentation in the

case of real time issues. 

The device replacement process was originally presented in [1] ,

and limitations of this process with respect to real time systems

were discussed in [6] . In summary, the replacement process in-

volves changing the most aged component with a hot spare, whilst

also ensuring that uneven parity distribution is maintained by re-

distributing it (using the parity distribution of [7] ). This involves

moving data and reconstructing parity on other devices. These

operations necessarily increase write amplification and device re-

placement time—write amplification refers to the additional writes

caused by operations such as garbage collection and wear level-

ling, and is formulated as the ratio of total writes performed to

the writes requested by the host [8] . This presents limitations in

real-time environments. 

A number of studies aimed at providing on line and efficient

RAID reconstruction have been conducted for magnetic hard disks,

such as [9–12] . Although they offer on line replacement, these

mechanisms considerably increase the amount of I/O to the storage

systems and thus the average response time of the system grows,

as shown in [11] . Existing SSD based replacement techniques ei-

ther do not provide online replacement [2] or apply HDD based

RAID reconstruction mechanisms [13,14] . 

Write amplification in RAID has been extensively discussed in

literature. MiPiL, for instance, minimise data migration while main-

taining uniform data and the parity distribution of RAID-5 [15] .

Moreover, a diagonal coding scheme is introduced for system-level

wear levelling which prevents rapid wear out due to updating de-

pendencies between actual and parity data [16] . To create wear

imbalance in the case of sequential workloads a forced random

write approach with partial stripe is presented in [3] —however this

approach increases write amplification while reducing lifespan. To
ddress this an efficient lifetime management that prevents addi-

ional parity updates while creating age differentiation is given in

17] . These mechanisms only consider parity related write amplifi-

ation, ignoring the high write amplification caused by device re-

lacement and parity redistribution. 

There have been several techniques proposed to replace solid

tate devices in case of failure. Diff-RAID [2] provides a de-

ice replacement which shifts parity according to the next par-

ty assignment—however a significant difference is that it applies

 reconstruction method based on magnetic devices and therefore

ncreases write amplification and device replacement time due to

dditional parity movement operations. To reduce to parity data

verheads, a configurable RAID mechanism for SSDs is presented

n [14] . The mechanism stores less important data using RAID 0

which does not provide redundant data for recovery in case of

ailure) while more important data is stored using parity based

AID levels. Although this reduces performance overheads incurred

rom parity data, it does not provide a replacement policy for a

omplete device failure—only partial levels of data recovery. 

Non-deterministic behaviours of NAND flash memory have been

nvestigated in several works, including garbage collection conflic-

ion with I/O. These studies propose either partial cleaning poli-

ies with the help of additional memory [18,19] , file system sup-

ort [20] , or pre-emptible garbage collection [21] , but they do not

onsider the context of RAID. 

To guarantee average I/O latency while migrating data,

22] presents a control-theoretic approach which dynamically ad-

usts the speed of data migration by periodically measuring I/O

erformance of the magnetic storage devices. Thus, it migrates the

ajority of data during idle time periods or low density streams

23] . presents an idle time detection method that achieves zero im-

act on the foreground application whilst rebuilding the RAID. 

. Architectural design 

The architecture of the system and internal communication

aths are illustrated as a block diagram in Fig. 1 and is based

n [7] . It consists of the solid state devices, memory compo-

ents to store meta data information, and the FPGA-based man-

gement components. The management component consists of 3
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Data structure 1 Global view of a single device. 

Data structure 2 Global view of RAID array. 
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Data structure 3 Stripe mapping table entry. 

Data structure 4 Device specific I/O request. 
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ain blocks. The first block—Device Replacement—contains proac-

ive hot swapping, coordinated data migration, and parity redistri-

ution functionality. It monitors the Global Flash Translation Layer

FTL) in order to make decisions about activating or deactivating

hese functions. 

The second block is the Global FTL as it takes a holistic view

f the whole array, rather than a view of a specific SSD device—

his is the view described by the pseudo code data structure in

ata structure 1 —an array of this structure is held globally, with

ne array entry per device and this is what enables the raising of

arious functional behaviours to a global level. For each device a

ecord is kept as whether or not garbage collection is currently ac-

ive, device replacement is ongoing, the percentage of parity to be

tored on the device, the number of erasures performed, the num-

er of free blocks remaining, the hard threshold for garbage col-

ection, the queue of incoming I/O requests, a table of logical to

hysical addresses and the page status (valid data, invalid data, or

ree space). The Global FTL manages address mapping (logical to

hysical addresses) using these tables, and garbage collection func-

ionality. To reduce the performance overhead of meta data opera-

ions, the FTL physically stores the page status tables in NvSRAM,

nd SRAM is used for physically storing address mapping tables

nd the statistical information for each individual device in the ar-

ay. 

The third block—the RAID controller—provides primary RAID

unctionality. The view of the overall RAID array is described by

he pseudo code data structure in Data structure 2 , and consists of

 note of the type of the array (RAID-4, RAID-5, Diff RAID, or semi

ybrid), the number of devices in the array (not counting spares),

he erasure limit threshold for the devices in the array (we assume
he devices are homogenous), a boolean variable indicating if the

evice replacement process is currently active, an array of meta-

ata structures describing the state of each device in the array,

nd the stripe mapping table which contains details of all stripes

f data stored in the system. This stripe mapping table is stored

n SRAM memory. The semi hybrid controller dynamically recon-

gures components in the array, and the global view of the array,

fter device replacement in order to improve read performance by

anipulating this structure. 

An entry in the stripe mapping table is described by the pseudo

ode data structure in Data structure 3 and consists of a list of the

hysical devices that the data in question is stored on, the device

ndex where parity is stored, and the logical address of the data. It

s only necessary to store a single logical address, as this refers to

n entry in the ssd m 

etadata address mapping table lpa t able where,

or a given datum the logical address maps to the physical address

here the datum is stored. 

Each device maintains its own queue of incoming requests, de-

cribed by the pseudo code in Data structure 4 . A request consists

f a logical block number that the request targets, arrival time, the

ype of request (which may be read, write, erase, or generated by

arbage collection or device replacement), the size of the request,

nd the priority—which may be either high or low. 

. Proactive hot swapping 

The proactive hot swapping mechanism presented in this sec-

ion enables device replacement and array reconstruction to be

arried out while the array remains on line before the given de-

ice reaches a critical bit error rate. When device replacement is

eeded, incoming write requests are redirected to a hot spare de-

ice at FTL level and the stripe mapping table in the FTL is up-

ated. However reading from the failing device causes additional

/O, due to the need to read and recalculate using parity blocks. 

A device can be considered in one of three states by the Global

TL. S 0 is a fully enabled state—the device is available for all I/O

ead/write activity. S 1 is a read only state where the device only

esponds to read instructions and does not serve any writes. S 
2 
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Fig. 2. A comparison of device replacement mechanisms. 
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is a disabled state where the device is not accessible for any I/O

read/write activity. ( Algorithm 1 ) 

Algorithm 1 Managing proactive hot swapping. 

1: ssd_array[].state, spare ← S 0 , RAID.number_devices+1 

2: while true do 

3: repeat 

4: eldest ← greatest(ssd_array[].erasures) 

5: until eldest > RAID.threshold 

6: ssd_array.eldest.DR, active_replacement ← S 1 , true 

7: update(ssd_array[].parity_percent) 

8: while active_replacement do 

9: end while 

10: if RAID_raidtype = hybrid then 

11: ssd_array[eldest].DR, spare ← S 1 , spare+1 

12: else 

13: ssd_array[eldest].DR, spare ← S 2 spare+1 

14: end if 

15: end while 

All devices in the array—including all future devices to be used

are initialised to S 0 (Line 1) and the next spare device identified,

before the hot swap manager enters the infinite loop that moni-

tors the whole system (Line 2). The index of the most aged de-

vice is noted on each iteration of the loop that follows in the local

variable eldest —which then terminates when one device exceeds

the safety threshold (Line 3–Line 5). The hot swap manager then

records that it is in the process of hot swapping the device by

setting the acti v e _ replacement flag and the state of the device in

question (Line 6)—this ensures that the FTL knows to migrate write

operations from the old device to the new device. Parity limits are

then redefined across the array for all the remaining devices and

the new device (Line 7). The hot swap manager then busy waits

until all data has been migrated—indicated by the FTL resetting the

active replacement flag (when the cold data migration process re-

ports that all data has been migrated) (Line 8, Line 9). If a hybrid

RAID configuration has been selected (Line 10) then the replaced

device can be retained for read purposes (Line 11), else it is dis-

carded (Line 13), and in both cases the next spare device is identi-

fied. 

Dynamic I/O location is the process by which I/O destination

requests are determined during hot swapping and is described in-

formally in Algorithm 2 . Read operations that hit the old device

Algorithm 2 Dynamic I/O location. 

1: while true do 

2: spare ← RAID.number_devices+1 

3: eldest ← greatest(ssd_array.erasures) 

4: ? RAID.table[x].logical_address = request.blkno : 

5: devices_needed ← RAID.table[x].devices 

6: if eldest ∈ needed_devices ∧ active_replacement ∧ re-

quest.type = update then 

7: write(spare, request) 

8: invalidate(eldest, request) 

9: else 

10: Do I/O operations as normal 

11: end if 

12: end while 

remain unchanged, write and update operations are always redi-

rected to the new device, with update also invalidating the data

on the old device. Firstly, we identify the spare end eldest de-

vices (Line 2, Line 3) and then extract the set of devices which

are needed to service the current request (Line 5) by identifying
he entry in the stripe mapping table that corresponds to the log-

cal address in the meta data (Line 4) identified in the incoming

equest. If the eldest device is part of the request, and there is

 device replacement ongoing, and the request is for an update,

hen it needs special consideration (Line 6). In this case, updates

re redirected to the new device and the old data is invalidated

Line 7, Line 8), but read and write operations proceed as normal

Line 10). Update operations that do not target the eldest device,

r when not in device replacement mode also proceed as normal. 

The proactive technique reduces the probability of failure in

ultiple devices simultaneously as it starts data migration before

 device fails. However, there will generally be some data which is

ot updated during the data migration process as it has not been

ccessed and will have to be actively migrated before next device

eplacement operation. To address this, the following section in-

roduces a cold (coordinated) data migration operation where cold

ata in the failing device is partially migrated to the new device

sing an idle time detection approach. 

. Coordinated data migration 

Device replacement and garbage collection tasks both generate

internal) I/O requests. Cold data migrations are usually triggered

hen there is an idle time, or low density workload patterns are

etected. In the case where garbage collection also uses idle time

etection (see [24] ) as implemented in this architecture, the pos-

ibility exists that the sum total of idle time periods is insufficient

or completing all of the internal I/O requests generated. Therefore

hen the migration operation overlaps with an ongoing garbage

ollection process in the target device performance of the system

egrades. 

Fig. 2 examples this problem in three scenarios. The first is an

dle time reconstruction mechanism on a traditional magnetic disk

rray, and shows that to minimise the performance overhead in re-

onstruction, I/O requests generated to serve reconstruction (DRT)

re triggered when an idle time period (white space on the X -axis)

s detected. However this scenario enjoys two important proper-

ies: there is no garbage collection, and there are no time con-

traints as it is assumed other disks are not degrading. 

These two properties are not enjoyed by the SSD array and this

s shown in the other two scenarios. In the second, both data mi-

ration and garbage collection occur on the new spare device (only

he new spare device needs considered as no new data is written

o the old device, and garbage collection is not performed on the

ld device)in the same idle time periods and generate a number
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f internal I/O requests. The drawback is that the idle time peri-

ds need to be longer in order for all these requests to be served.

henever the mechanism detects an idle time period, the requests

enerated are inserted into the I/O queue of the corresponding de-

ice. Since the device replacement time must be as short as possi-

le, these tasks can be assigned a higher priority than general I/O

nstructions. However invoking the garbage collector causes incom-

ng requests to be blocked and I/O is adversely affected, indicated

y the horizontal arrows in the white space idle time. 

The third scenario is one in which coordinated data migra-

ion is introduced to interleave the overlapped requests. It moni-

ors the ongoing garbage collection processes in the array via the

lobal FTL ( RAID.ssd _ array.GC). If garbage collection and device re-

lacement processes attempt to access the target device during the

ame idle time period, the mechanism reschedules them by ma-

ipulating the I/O request priority levels to guarantee system re-

ponse time. In normal operation, I/O request priorities are fixed.

owever if the target device is running out of free space and con-

equently has to garbage collect immediately then I/O requests

enerated by garbage collection take a higher priority than those

f data migration, otherwise the data migration I/O requests main-

ain a higher priority. The third scenario of Fig. 2 illustrates this

nd shows that no I/O block is delayed, and the highest priority

perations can complete. 

The decision process for an individual device (indexed x ) is in-

ormally described in Algorithm 3 . Initially the priorities of all the

lgorithm 3 Coordinated data migration during hot swapping. 

1: while true do 

2: ∀ req ∈ ssd_array[x].request_queue | 
3: req.type = DRT ∨ req.type = GC • req.priority ← low

4: if RAID.active_replacement. ∧ ssd_array[x].GC ∧ idletime

then 

5: if ssd_array[x].freeblocks > ssd_array[x].hardthreshold 

then 

6: ∀ req ∈ ssd_array[x].request_queue | req.type = DRT •

7: req.priority ← high 

8: else 

9: ∀ req ∈ ssd_array[x].request_queue | req.type = GC •
10: req.priority ← high 

11: end if 

12: else 

13: Normal scheduling is performed 

14: end if 

15: end while 

/O requests generated by reconstruction and garbage collection

asks are set low (Line 2, Line 3). If there is a request pending for

oth device replacement and garbage collection (Line 4) the resul-

ant action is dependent on the number of free blocks (Line 5). If

his is higher than a predetermined threshold (Line 5) then device

eplacement tasks may be assigned a high priority (Line 6, Line 7),

therwise garbage collection is set to the higher priority (Line 9,

ine 10) as the memory is running out of free space. If there is

o overlapping of these requests, scheduling continues as normal

Line 14). 

As improving the efficiency of idle time detection is not in the

cope of this study, a basic idle time detection function is adopted.

o detect an idle time, the last access time of the corresponding

emory is stored in a register. If there is not any request after a

redefined time period this is considered as an idle time, and idle

ime is reset when the next request arrives. 
. Cost effective parity redistribution 

The SSD RAID presented in this paper and in related work per-

it a parity redistribution process during device replacement—and

equire strict control over parity distribution percentages to main-

ain acceptable ageing ratios. However redistributing parity at de-

ice replacement time has two main bottlenecks: it increases write

mplification, and it requires additional data movement between

ld and new devices—this adversely affects I/O performance. The

ost effective parity distribution mechanism in this section ad-

resses these problems and it achieves this without needing ad-

itional expensive data movements. This mechanism redistributes

he parity data from the old device during the execution of (host)

rites (hot data migration), or during a cold data migration period.

.1. Parity redistribution with hot data migration 

In this section we describe parity redistribution with hot data

igration by exampling two scenarios. The scenarios differ from

ach other with regards to the status of the target stripe (full or

artial), and the location of parity and data in the stripe. In the

rst scenario, given a partial stripe update with a component tar-

eting the device being replaced, updated parity is not directly

elocated to the hot spare device as, being the new device it is

nly allocated a small parity percentage. Instead, the device with

he highest parity percentage that does not hold a component of

he partial stripe being updated is selected and the updated parity

ritten to it. This eliminates the need for an extra write opera-

ion and stripe unit migration required by previous techniques and

herefore improves write amplification. 

The second scenario is the case where the data being updated

s a component of a full stripe across the array—the difference with

he first scenario is that there is no free device to which updated

arity can be relocated. In this scenario there are two possibilities:

he first possibility is where parity distributions across the array is

lready balanced in terms of age distribution ratios and so parity

ust start migrating to the new device, the second possibility is

here an existing device in the array needs additional parity lo-

ated to it in order to maintain age ratios. 

In the case of the first possibility, the updated data is written

o the new hot spare device and the updated parity to the device

n which the data element originally resided, and this can be per-

ormed in a single step. This eliminates the need for an additional

rite and swap operation required by previous techniques. In the

ase of the second possibility, two steps are necessary: firstly the

pdated data is written to the same device on which it originally

esided; then the data stripe which resided on the second eldest

evice in the array is moved to the new hot spare device and

he updated parity written to this next eldest device in the array.

his improved write amplification over previous techniques due to

ewer datums being moved. 

.2. Parity redistribution with cold data migration 

Cold data migration refers to a period where the array is in an

dle time (not currently servicing I/O requests). Actions taken in a

old data migration depend on the type of the piece of data being

oved—determined using the dynamic strip mapping table. If the

atum being moved is parity, then the same process as for hot data

igration is used as this occurs no extra performance overheads. If

he datum being moved is actual data then it is directly relocated

o the new hot spare device. 

This allows for parity data to be migrated to suitable target de-

ices during idle time periods. This dynamic movement of data

hilst the array is kept available to service I/O requests is the ma-

or enhancement over existing techniques—made possible because
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Fig. 3. Semi hybrid RAID after the second device replacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 4 Supporting read in semi hybrid RAID. 

1: while 1 do 

2: request ← RequestQueue() 

3: if request.type == read ∧ HR == 1 then 

4: location ← CheckMetaData(request.data) 

5: if location.backup == null then 

6: data ← Read(data, location.new) 

7: else 

8: if GC ∨ DR then 

9: data ← Read(location.backup) 

10: else 

11: data ← (Read(data, location.new) 

12: � Read(data, location.backup)) 

13: end if 

14: end if 

15: else 

16: We are not using a semi hybrid configuration 

17: end if 

18: end while 
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the old device is not immediately discarded upon needing replaced

and is kept available for reading. This results in significant im-

provement in write amplification and I/O response times. 

7. Semi-hybrid RAID 

Proactive hot swapping initiates data migration from an age-

ing device to a new device before endurance limits become criti-

cal. Once the replacement process is complete there are two copies

of valid pages: one in the old device, and one in the new device.

This is a typical RAID 1 redundancy model, and may be exploited

to improve read performance. In order to exploit this improved

read performance further in this section we present a semi hybrid

RAID architecture, where, when a device replacement is started the

mechanism configures old and new devices in a manner similar to

RAID 1. In doing so, the old device is not immediately discarded

and is instead retained for a period in order to service some (non

ageing) read requests. The architecture is referred to a semi hybrid

RAID as it is effectively im posing a RAID 1 configuration over a de-

vice and its replacement, in a manner that is transparent to the

SSD RAID architecture of the system. 

This gives rise to a more complicated hardware and meta data

architecture as the array is used through time as each device may

be shadowed by a single older device that is used to service read

requests; however the benefit is that a higher throughput of read

requests can be serviced—particularly in the presence of the idle

time detection techniques. 

Fig. 3 illustrates an example of the semi hybrid RAID after the

second device replacement process (we present the second re-

placement as it illustrates two instances of architecture emerging).

At this point the system consists of devices 3, 4, 5, 6, and 7. The

semi hybrid RAID 1 mechanism consists of the old devices 1 and

2 which have been replaced, shadowing the replacement devices 6

and 7. When further devices are removed from the array—for in-

stance device 3 being replaced by device 8—these pairs would also

form individual semi hybrid RAID configurations. New data is al-

ways written to the new device, with appropriate meta data up-

dates. It is possible—depending on the age of the array—that each

individual device in the array is shadowed by a RAID 1 partner old

device. 

Algorithm 4 shows informally how the semi hybrid raid works.

The next queued access request is picked off the request queue and

stored in the variable request (line 2). If the hybrid configuration

is active and the request is a read (line 3) the mechanism then

checks the location of the data by inspecting meta data(line 4)—

this informs the device as to whether or not there is a second valid

copy in the array, and incurs a very minimal performance overhead

as the meta data status table is stored in local nvRAM. If the data

is not backed up with a semi hybrid arrangement (such as device

3 in Fig. 3 ) location.backup will be null (line 5) and the data is read

as normal (line 6). If the data is stored in a chip backup with semi

hybrid raid but there is garbage collection or device replacement
aking place on the new chip (line 8) then data is read solely from

he backup location (line 9), otherwise the data is read in paral-

el from both devices (line 11) which brings a slight performance

nhancement. If the semi hybrid raid configuration is not active,

r the original request was not a read (line 14) then all access re-

uests are processed as normal. Any data writes are considered in

n analogous manner: if the semi hybrid raid is not active then

ata is written as normal. If it is active, data is always written to

he new device but meta data is also checked to ensure that any

ackup copy is invalidated. 

. Experimentation, results, and discussion 

Experiments have been conducted using the Microsoft SSD sim-

lator [25] . Each of the techniques presented have been imple-

ented in the simulator, and experiments performed simulating

evice replacement. The experimental SSD array consists of five

nitial and five spare devices. The configuration parameters are as

ollows: reserved free blocks are set at 15%, minimum free blocks

t 5%, and a chip contains a single SSD device with 1024 blocks

er device, 64 pages per block, and a page size of 4 kB. Page read

atency is set at 0.025 ms, write latency at 0.2 ms, block erase la-

ency at 1.5 ms, and page stripe size at 4 kB. The primary reasons

or selecting these parameters are consistency with previous reli-

bility mechanism experiments. Experiments were conducted with

ynthetic traces (as published captured traces are not sufficient to

ge devices to desired levels) to analyse performance, device re-

lacement time, and write amplification. Usage characteristics pa-

ameters required for the traces were set with a request size of

 kB, an inter arrival time of 3 ms, and a probability of read access

f 0.2 as default. 

.1. Performance evaluation 

In this section two performance evaluations are given. Firstly,

ystem response times are measured during the replacement pro-

ess to evaluate efficiency of the proactive hot swapping and coor-

inated data migration. Secondly, read performance of the system

s evaluated with the semi hybrid RAID once a device replacement

s completed. Inter arrival time of requests is varied over a nor-

al distribution with average times of 2, 3, and 4.2 ms (ms). Only

races dominated by random I/Os that cause frequent update op-

rations on the parity device are considered as maximum reliabil-

ty is achieved with a workload of small random writes. Basic idle
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Fig. 4. Average response time varying inter-arrival time. 

Fig. 5. Standard Deviations of response times varying inter-arrival time. 
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Fig. 6. Average read response time after device replacements. 

Fig. 7. Device replacement times for parity redistribution. 
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ime detection approach for garbage collection and device replace-

ent tasks is used. 

Fig. 4 illustrates performance characteristics of three

echanisms—the online reconstruction of Section 5 , the proactive

ot swapping without garbage collection of Section 4 , and the

roactive hot swapping with garbage collection of Section 5 .

or a short inter arrival rate (2 ms), proactive hot swapping

xhibits improvement in response time by 16% over basic online

econstruction; as inter arrival increases, proactive hot swapping

xhibits further improvements. The system with co-ordinated

arbage collection exhibits the most significant improvement

cross the range of inter arrival times—most clearly demonstrated

y the results for an inter arrival time of 4.2 ms. 

Standard deviations of system response times are given in

ig. 5 , and they reflect similar positive results. Both the proac-

ive method, and the proactive method with co-ordinated garbage

ollection exhibit smaller deviations across all three inter arrival

imes—with the co-ordinated garbage collection approach showing

he smallest deviation in all three experiments. 

Fig. 6 shows a comparison of read performances of the proac-

ive hot swapping using the parity distribution of [1] and the semi

ybrid RAID of Section 7 after two and five device replacements.

equest size of read operations was fixed at 8 kB and probabil-

ty of read access configured as 0.4. Results exhibit only marginally

etter performance in the semi hybrid architecture. However, the

ead performance of the semi hybrid RAID can be further improved

ith lesser parity percentage on the most aged device. Typically

he most aged device holds 80% of total parity and 20% data and

o the amount of migrated data is low when device replacement is

riggered. As the percentage of data migrated to a new devices in-

reases, the possibility of incoming read requests hitting rises, and

o lesser parity percentages will improve the hit rate and conse-

uently performance. 
.2. Device replacement time 

Device replacement time refers to the wall clock time it takes

rom initiating a device replacement, to completing the process.

his is important as the longer a replacement takes, the more

ikely it is that another device will tend towards an endurance

hreshold. Fig. 7 presents the results of comparing device re-

lacement time of the on line cost effective parity distribution

f Section 6 to the off line Diff-RAID mechanism of [2] . Default

onfiguration parameters are used, and inter arrival times varied.

evice replacement times are normalized to enable direct com-

arisons. The cost effective parity distribution mechanism exhibits

 speed up of 34% over Diff-RAID—this is entirely due to proac-

ive hot swapping. As inter arrival time increases so does the per-

ormance benefits due to co-ordination of idle time periods. This

eans that the total time taken to replace a device is approxi-

ately 35% shorter when proactive hot swapping is used. 

.3. Write amplification analyses 

Fig. 8 shows the effect on write amplification under two differ-

nt garbage collection approaches for Diff-RAID and the cost effec-

ive parity distribution with proactive hot swapping of Section 6 .

he first is idle time based, where cleaning takes place in the

ackground. The second is threshold based where cleaning is trig-

ered based on the amount of free space remaining. Both employ a

reedy policy which selects the dirties blocks to clean. Under both

arbage collection approaches, cost effective parity distribution

echanism exhibits improved write amplification with the idle

ime approach exhibiting the largest percentage improvement—

iff-RAID exhibiting an amplification factor of nearly 3, and cost

ffective parity distribution of only 2. 
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Fig. 8. Write amplification for random write workloads. 
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9. Conclusions and future work 

In this paper we presented investigations into several tech-

niques that enhance real time and performance capabilities of our

SSD RAID array design such that they could be implemented in

our FPGA based FTL. The proactive hot swapping mechanism pre-

dicts and initiates in advance when swapping will be required

thereby maintaining system availability and reducing overheads of

the on-line reconstruction. This eliminates a non-deterministic be-

haviour with respect to time. Garbage collection aware data mi-

gration further improves system performance during the replace-

ment process. Simulation results demonstrate that the proactive

garbage collection aware replacement mechanism significantly en-

hances I/O response time with low standard deviation during de-

vice swapping, which gives confidence in moving towards a system

that provides real time guarantees. The results also indicate the on

line parity redistribution technique improves write capability and

replacement time compared to other existing works. Moreover, the

semi hybrid RAID improves read performance after device replace-

ment is complete. 

As future work, we intend to investigate enhancing our mech-

anism with a real time garbage collector to determine the worst

case execution time during replacement to address this potential

area of non-determinism. A further important area of investigation

is to measure the implementation costs of each of the techniques

presented in a Verilog implementation as part of our system-on-

chip design in order to determine real estate efficiency on different

FPGA architectures upon which our FTL controller may be synthe-

sised. 
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