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a b s t r a c t

This study presents a multi-objective approach for selecting an optimal network of public transport (PT)
priority lanes. Bus priority schemes and techniques on urban roads and highways have proven effective
for increasing reliability, efficiency, and faster travel times. This study develops a multi-objective model
for selecting an optimal PT priority lanes network that 1) maximizes total travel time savings; 2)
maintains balanced origin and destination terminals; and 3) minimizes the construction budget. In
contrast to commonly used single objective models, which must be executed numerous times in order to
provide the decision-maker with feasible solutions, multi-objective models exhibit a complete set of
feasible and optimal solutions with a single execution. Since the major disadvantage of a multi-objective
model is the need to select a preferred solution from a set, a multi-criteria approach was developed for:
1) ranking each decision-maker's solutions; and 2) selecting a compromise solution acceptable to a group
of decision-makers. This methodology is demonstrated with a case study of Petah Tikva, a medium-sized
city in Israel.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Public transport priority schemes are used to "reduce or elim-
inate certain types of general traffic interference that can slow
down transit service, make it less reliable, or reduce its capacity"
(Kittelson & Associates. et al., 2003). This priority can be both
spatial (dedicated lanes) and temporal (traffic signal priority).
Spatial schemes can be classified as: mixed traffic (no priority to
public transport vehicles); semi-exclusive (a lane partially re-
served for public transport but also available, based on time or
location, to other types of vehicles); exclusive (a fully reserved
lane, but interaction with other modes of transport occurs at in-
tersections, turnings, etc.), and grade separated (exclusively dedi-
cated for public transport vehicles).

Ceder (2004), investigated several priority schemes in Europe
(Athens, Dublin, Munich, Turin, Vienna, and Zurich) and concluded
that they have a positive effect on reducing travel times and in-
creasing average speed, patronage and revenues. Mesbah, Sarvi,
and Currie (Mesbah et al., 2008, 2010, 2011b) were the first to
introduce a system-wide approach for designing priority lanes
based on a bi-level model comprising priority lane selection and
,

traffic assignment. A model was recently developed for optimal
construction of a connected network of bus priority lanes (Hadas
and Ceder, 2014). This optimization model presented an algorithm
for maximizing the travel time reduction resulting from the use of
priority lanes given a predefined budget. However, the major
disadvantage in investigating a wide range of scenarios is that the
policymaker is required to execute the algorithm multiple times
with different budget constraints, as larger budgets lead to the
construction of more priority lanes and increased travel time re-
duction. The repeated executions are time consuming and
cumbersome.

This paper introduces a multi-objective and multi-criteria fra-
mework with three components: 1) a multi-objective algorithm
that with one execution provides a set of solutions for the deci-
sion-maker to choose from; 2) a multi-criteria model that assists
the decision-maker to rank a solution based on specific pre-
ferences; (3) joint group ranking for selecting the solution ranked
highest by all decision-makers.
2. Literature review

2.1. Public transport network design

Numerous studies have been published regarding the design of
public transport networks. Baaj and Mahmassani (1991, 1992,
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Fig. 1. Example of a Pareto front.
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1995) developed methods based on artificial intelligence with
minimum frequency, load-factor, and fleet-size constraints. Ra-
mirez and Seneviratne (1996), proposed models with multiple
objectives, taking into account passenger flow and distance tra-
velled. Yan and Chen (2002) developed a model for designing
routes and timetables that optimizes the correlation between
supply and demand. Bagloee and Ceder (2011) developed a heur-
istic model in order to solve realistically sized road networks. The
model takes into account budget constraints, level of service and
attractiveness of the system.

All these models and approaches neglect to incorporate priority
schemes as an integral part of PT network design. Many bus
priority strategies have been demonstrated worldwide. Tradi-
tionally, priority is granted for bus operation at stops, intersec-
tions, and by preferential/exclusive lanes. It is known that bus
travel times, reliability of service, and vehicle productivity improve
when buses are able to use higher-speed, uncongested lanes.
These improvements make the bus systems more attractive and
thus increase the potential to gain new riders (Kittelson & As-
sociates. et al., 2003).

Skabardonis (2000) reviewed existing control strategies, eval-
uated them on an actual arterial corridor, identified the major
factors affecting transit priority, and formulated both passive and
active transit priority strategies. According to the review, both the
passive and active priority strategies placed major emphasis on
system-wide improvements to transit movements and on mini-
mizing any adverse impact on the rest of the traffic stream. An
evaluation technique was also developed to assist in designing
signal priority strategies and to predict the impact of the transit
priority measures. Turnquist and Bowman (1980) used a set of
simulation experiments to investigate the effect on service relia-
bility of several characteristics of network structure in urban bus
systems. These experiments primarily focused on the factors
which lead to vehicle bunching and on the effect of network form
and route density on transfers. The results of these experiments
highlight the importance of controlling link travel time variability
and of scheduling to expedite transfers, especially in radial net-
works. Yao et al. (2014) presented a tabu search-based transit
network optimization method that considers travel time relia-
bility. The optimization model seeks to maximize the efficiency of
passenger trips in the transit network. The results show that the
proposed method can effectively improve the reliability of a transit
network and reduce the travel time of passengers in general.

Currie and Lai (2008), who investigated dynamic priority lanes,
reviewed a variation of the intermittent bus lanes (IBL) and dy-
namic transit lanes concept, in the dynamic fairway (DF) adopted
for trams in Melbourne, Australia. Their paper documents the
world's first practical, ongoing experience with IBL-DF operation. It
also presents future plans for a Melbourne bus-based IBL, referred
to as the “moving bus lane.” Significantly, both applications found
good driver compliance with transit lanes, suggesting the IBL-DF
concept has practical performance benefits. Eichler and Daganzo
(2006) described strategies for operating buses on signal-con-
trolled arterials using special lanes that are made intermittently
available to general traffic. According to their paper, bus lanes with
intermittent priority (BLIPs) do not significantly reduce street ca-
pacity. Intermittence, however, increases the average traffic den-
sity at which the demand is served and as a result traffic delay
increases. The main factors determining whether an intermittent
system saves time are: the traffic saturation level, the bus fre-
quency, the improvement in bus travel time achieved by the
special lane, and the ratio of bus and car occupant flows. In some
cases, where a dedicated bus lane cannot be operated, a BLIP can
save bus and car occupants together as much as 20 persons-min of
travel per bus-km. Xie et al. (2012) describe how dynamic bus
lanes with BLIP allocation strategies may improve bus transit.
These strategies consist of intermittently opening the bus lane to
general traffic when not in use by a bus. Simulated results are
consistent with analytical results.

The first to introduce a system-wide approach for designing
priority lanes were Mesbah, Sarvi, and Currie (Mesbah et al., 2008,
2011a, 2010, 2011b) who proposed a bi-level model combining
priority lane selection and traffic assignment. The model assesses
the impact of exclusive lanes on private car travel time and opti-
mizes the overall weighted travel times and distances. Due to the
complexity of the model, heuristics are introduced, such as genetic
algorithms. However detailed and innovative the model may be,
the following issues have to be considered. a) The model considers
two alternatives, exclusive or mixed, while it is possible to con-
sider other alternatives which differ in cost, flow, travel time re-
duction, etc. b) The priority lanes presented in the model are not
necessarily connected (or continuous). It is possible to add explicit
constraints, which further increase complexity and model size. c)
The priority lanes do not necessarily cover the network efficiently
since as the model only takes into account travel time reduction.
Hadas and Ceder (2014) recently introduced a new approach and
modelling for selecting an optimal network of public transport
(PT) priority lanes. Their approach is based on a system-wide
concept that results in optimal PT network coverage. It develops a
model for optimally selecting a set of PT priority lanes that max-
imizes total travel time savings while also maintaining balanced
origin and destination terminals given a budget constraint.

2.2. Multi-objective optimization

Many problems have multiple conflicting objectives, for which
there is no single best solution. For example, solution x1 is said to
dominate solution x2 if x1 is better than x2 when measured on all
objectives. If x1 does not dominate x2 and x2 also does not dom-
inate x1, they are referred to as non-dominated solutions. Various
multi-objective optimization algorithms provide a set of non-
dominated solutions. If the set of non-dominated solutions re-
presents the entire search space, it is called the global Pareto op-
timal set (or the Pareto set). Otherwise it is called the local Pareto
optimal set (Coello Coello, 2006).

Fig. 1 presents an example of a Pareto front. The various points
represent feasible choices in which smaller values are preferred to
larger ones. Points C and D are not on the Pareto front because
point C is dominated by both points A and B, while point D is
dominated by point B. Points A and B are not strictly dominated by
any other point, and hence lie on the frontier.
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From a practical perspective, users need only one solution from
the set of optimal solutions. Therefore, solving Multi-Objective
Problems (MOPs) can be seen as a combination of both searching
and decision-making (Horn, 1996). Four main approaches are
presented in the literature (Miettinen, 1999).

) No-preference
In no-preference methods, where the preferences of the deci-
sion-maker (DM) are not taken into consideration, the problem
is solved using a relatively simple method, and the solution is
presented to the DM. The global criterion is an example of this
method (Miettinen, 1999; Zeleny and Cochrane, 1982). The
global criterion method transforms MOPs into single objective
optimization problems by minimizing the distance between
reference points and the feasible objective region.

) Decision-making after search/a posteriori
These methods find all possible solutions of the non-dominated
set and utilize user preferences to determine which is the most
suitable. The weighted-sum (Cohon, 2013; Miettinen, 1999) and
ϵ-constraint (Haimes et al., 1971) methods are examples. In the
weighted-sum method, all objectives are combined into a single
objective by using a normalized weight vector. The Pareto
optimal solution is obtained by resolving the problem using
different weights. In the ϵ-constraint method, the problem is
transformed into a single objective problem such that only one
objective is optimized while the others are transformed as
constraints. The ϵ vector is determined and uses the boundary
(upper bound in the case of minimization) for all objectives. For
a given ϵ vector, this method will find an optimal solution by
optimizing objective j. By changing ϵ, a set of optimal solutions
will be obtained.

) Decision-making before search/a priori
These methods incorporate the use of a preference before the
optimization process. Consequently there is only one solution at
the end. An obvious example of this method is the weighted-
sum method, where the weights can be used to represent the
DM's preference. Another example is the lexicographic method
(Fishburn, 1974), in which the DM is asked to arrange the
objective functions by their importance. The optimization
process is performed individually on each objective following
the order of importance while the result of each optimization
process is used as a constraint for the next process.

) Decision-making during search/interactive
These methods are a hybridization of the second and third
methods. Using this type of method, a human DM periodically
refines the obtained trade-off solutions and thus guides the
search.

2.3. Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) are stochastic
population-based optimization techniques used to find Pareto
optimal (or near optimal) solutions for a given problem. MOEAs
are similar to EAs (evolutionary algorithms), except for the use of
the dominance relation as the criterion for reproduction prob-
ability. Thus, at each generation objective values are calculated for
every individual in the population and are then used to rank the
individuals based on their dominance relationships within the
population. Higher ranking individuals are given higher prob-
abilities to produce the offspring population.

Elitism is a mechanism to preserve the best individuals from
one generation to another. Using elitism, best individuals found
during the optimization process are never lost. Non-elitism MOEAs
include VEGA (Schaffer, 1985), MOGA (Fonseca and Fleming, 1993),
NPGA (Horn et al., 1994) and NSGA (Deb, 2001). Elitism algorithms
include PAES (Knowles and Corne, 2000), SPEA2 (Zitzler et al.,
2001), PDE (Abbass et al., 2001), NSGA-II (Deb et al., 2002) and
MOPSO (Coello et al., 2004).

2.4. Multi-criteria decision-making

In most cases, when solving a multi-objective optimization
problem, the result is a non-dominated solution set from which
the DM has to choose his preferred alternative. (Within such a set
no solution is better than another with respect to all the objec-
tives.). Selecting a preferred alternative is not a trivial task, and for
that reason some decision-making methods have been developed.
Accordingly, multi-criteria decision-making (MCDM) methods,
some of which are listed below, are automated methods for se-
lecting a preferred solution given a set of feasible solutions, while
having conflicting criteria (Ehrgott, 2005; Żak and Kruszyński,
2015). MCDM methods also allow assigning the various solutions
to different pre-defined classes and ordering them from best to
worst (Vincke, 1992).

A multi-criteria decision problem contains a set, A, of actions,
variants and/or solutions (defined using a complete list or set of
constraints) and a consistent set, F , of criteria. The consistent set of
criteria, which is consistent with the DM's preferences, provides a
comprehensive and complete evaluation of the set A. Moreover, no
correlation exists between the various criteria domains, and the
domains of all criteria are disjointed (Roy, 1990; Żak and Krus-
zyński, 2015).

The various methods of MCDM can be classified in different
ways. A general classification based on the purpose of the algo-
rithm is (1) MC choice/optimization methods, (2) MC sorting
methods and (3) MC ranking methods.

The max-min method, for example, can be used when the DM
wants to maximize the achievement in the weakest criterion,
while the min-max method can be used to minimize the max-
imum opportunity loss. Compromise programming identifies the
solution for which the distance from the ideal solution is the
minimum. (The ideal solution is an artificial solution consists of
the upper bound for maximization of the criteria set.) The ELEC-
TRE Method (Roy, 1991) compares two alternatives at a time and
attempts to eliminate alternatives that are dominated using the
outranking relationship. In the first version of this method, the
result is a set of alternatives (called the kernel) that can be pre-
sented to the DM for selecting the preferred solution. The second
version of this method provides a complete rank ordering of the
original set of alternatives. The TOPSIS method (Hwang and Yoon,
1981) assumes that the preferred solution should simultaneously
be closest to the ideal solution and farthest from the negative-
ideal solution. (The negative-ideal solution is an artificial solution
that consists of the lower bound for maximization of the criteria
set.) For every solution, TOPSIS calculates an index that combines
both its closeness to the positive-ideal solution and its remoteness
from the negative-ideal solution. The alternative that maximizes
this index value is the preferred alternative. Multi-attribute utility
theory (MAUT) (Keeney et al., 1979) is based upon the assumption
that every DM tries to optimize a utility function that is not ne-
cessarily known at the beginning of the decision process. The
utility function is composed of various criteria that enable asses-
sing the global utility of an alternative. For each criterion, the DM
gives a score, referred to as the marginal utility score. The marginal
utility scores of the criteria will be aggregated in a second phase to
the global utility score. Each alternative is evaluated on the basis of
the utility function and receives a “utility score”. This utility score
allows the ranking of all alternatives from best to worst.

Many MCDM methods require the use of relative importance
weights of criteria, which are usually proportional to the relative
value of unit changes in criteria value functions. A simple and
common method for ranking criteria is the “weights from ranks”

 

 

 



Fig. 2. The framework's components interactions.
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method. In this method, the DM ranks each criteria, ri, in order of
increasing relative importance. (The highest ranked criterion is
given a rank of 1.) Next, the weight of each criterion is defined as
λ =( + + ) ∑ ( + + )=k r k r1 / 1i i j i

k
j , when k is the number of criteria. While

this method produces an ordinal scale, it does not guarantee the
correct type of criterion importance because ranking does not
capture the strength of preference information (Masud and Ra-
vindran, 2008). When a large number of criteria are considered, it
may be easier for the DM to provide pairwise ranking instead of
complete ranking. As an example of such a method, consider the
analytic hierarchy process (AHP) proposed by Saaty (1977, 2008).
With AHP, the decision problem is first structured as hierarchal
levels. At the top level is the goal of the problemwhile subsequent
levels represent criteria, sub-criteria, and so on with the last level
representing the decision alternatives. Next, value judgments
concerning the alternatives with respect to the next higher level
sub-criteria are calculated based on available measurements. If
measurements are not available, the calculation is made from
pairwise comparison. After the value judgments of alternatives
have been computed, composite values are determined by finding
the weighted average values across all levels of the hierarchy. The
analytic network process (ANP), a generalization of the AHP
method that deals with dependencies, is another example of
MCDM methodology (Saaty, 2001). ANP allows for more complex
interrelationships among the decision levels and attributes than
AHP. Two-way arrows represent interdependencies among attri-
butes and attribute levels. The directions of the arrows signify
dependence. Arrows emanate from an attribute to other attributes
that may influence it. The relative importance or strength of the
impacts on a given element is measured on a ratio scale similar to
AHP (using pairwise comparisons and judgment). A priority vector
may be determined by directly asking the DM for a numerical
weight but there may be less consistency, since part of the process
of decomposing the hierarchy is to provide better definitions of
higher level attributes. The ANP approach is capable of handling
interdependence among elements by obtaining the composite
weights through the development of a “supermatrix".

According to Żak and Kruszyński (2015), municipal transpor-
tation projects, that are aimed at the development and enhance-
ment of the urban transportation system, must satisfy the city's
transportation policy and development strategy. The various im-
plications of building and using transportation systems make the
task of designing and planning them complex. Therefore, in ad-
dition to using multi-objective optimization methods in order to
obtain a set of optimal alternatives, multi-criteria decision meth-
ods are used to order the alternative solutions and, eventually
choose the preferred one (Pérez et al., 2015).

The following are a few examples of MCDM in the field of
transportation. Roy and Hugonnard (1982) used ELECTRE IV in
order to rank 12 suburban line extension projects on the Paris
metro system. Wey and Wu (2007) worked on transportation in-
frastructure (TI) project selection, where multiple factors such as
project risk, corporate goals, limited availability of a firm's TI re-
sources, etc., had to be considered. The problem was approached
using fuzzy Delphi, analytic network process (ANP) and the zero–
one goal programming (ZOGP) model. The use of this model was
demonstrated using an ongoing decision-making project in Tai-
chung City, Taiwan. Awasthi et al. (2011) presented a multi-criteria
decision-making approach for planning the location of urban
distribution centers under uncertainty. Using fuzzy TOPSIS, various
potential locations are evaluated based on a set of evaluation cri-
teria, and the best location is selected for an urban distribution
center. Angulo et al. (2014) addressed the problem of highway
network expansion. They proposed an extended. multi-objective,
bi-level, and continuous location model, The model that considers
demands, budget and user behavior is capable of handling un-
certainty in demand.

 

3. The framework for the multi-objective and multi-criteria
model

The present study introduces a combined Multi-Objective (MO)
and Multi-Criteria (MC) approach for selecting a compromise so-
lution (in the MC stage), based on a feasible, non-dominated so-
lution set (from the MO stage). The framework illustrated in Fig. 2
is comprised of: 1) an optimization stage, which based on the PT
network structure, costs, etc., finds the optimal solution set; 2) a
ranking stage, where the optimal solution set, along with the DM's
preferences serve as the input for the MCDM process which orders
the solution set based on each DM preferences; and 3) a group
selection process which combines the ordered solutions of each of
the DMs and selects one solution acceptable to them all.

3.1. Data and parameters

The following parameters are used as input for the model:

( )G N A, a directed network that comprises all road segments
traversed by PT routes

I a set of all nodes from which a priority lane starts or
ends, ⊆I N (i.e. the circled nodes in Fig. 3)

i, j nodes of network G, ∈ ∈i N j N,
P a set of all possible paths (shortest, quickest, etc.) starting

at node s and terminating at node t (i.e. 15-14-32-13-12-
11-33. Such a path is shown in Fig. 3). Matrix P can be
easily calculated, as described in Hadas and Ceder (2014).

s, t nodes of network G, serving as end points for
∈ ∈ ∈p P s I t I, ,

pi j
m s t
,

, , an indicator whether road segment ( )i j, is part of path m
that starts from s and terminates at t (of set P)

k priority lane alternative index (i.e. mixed traffic, semi-
exclusive, exclusive, grade separated)

ci j
k
, the construction costs of road segment ( )i j, , for alter-

native k (of set C)
vi j

k
, the travel time saving per passenger along road segment

( )i j, , for alternative k. The time saving is the estimated
reduction of travel time as a result of implementing
priority lane alternative k (of set V).

fi j, the total passenger flow of all routes passing through
road segment ( )i j,

dm a decision-maker (of set DM)
wdm

of decision-maker dm weight for each objective function of
(set W)



Fig. 3. Potential priority lanes and terminal nodes.
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3.2. Decision variables

xi j
k
, such that "1" represents the selection of priority lane

alternative k for road segment ( )i j, , and "0" otherwise.
∈x PFi j

k
,

pxm s t, , such that "1" represents the selection of path m that
starts from node ∈s I and terminates at node ∈t I , and
"0" otherwise.

3.3. Objective functions

OF-s maximizing the total travel time savings for PT users,
caused by the selected set of priority lanes (the saving
objective).

OF-d maintains a balanced connectivity between the selected
terminal nodes – represented by maximizing the mini-
mal degree for all terminal nodes ∈s I . The degree re-
presents the number of priority lanes connecting node s
to other terminal nodes. A higher degree corresponds to
better connectivity for a single node, while balanced
degree corresponded to better overall connectivity (the
degree objective).

OF-b minimizing the budget allocation for construction of
priority lanes (the budget objective).

3.4. Solution sets

PF the Pareto-front solution set
OPFdm the ordered solution set of the decision-maker dm
CS the compromise solution set

4. Multi-objective model for connected urban bus priority
lanes

The model's objective is to select a set of priority lanes that
optimize OF-s, OF-d, OF-b. This multi-objective model is devel-
oped based on the single objective model presented by Hadas and
Ceder (2014), Each priority lane will start from a node and end at a
node serving as terminals of the PT network. A connected, urban
bus priority lane network is a system-wide approach for PT
planning. Such an approach increases the PT connectivity level and
thus improves the attractiveness of the PT service. Moreover, ef-
ficient transfers can enhance the overall PT network performance
by providing better coverage and connectivity. The network pre-
sented in Fig. 3, which was adapted from Hadas and Ceder (2014),
illustrates the model. "Each arc (between two numbered nodes) is a
road section (or intersection priority scheme) which can be con-
structed as part of a possible priority lane (exclusive or semi-ex-
clusive). Each priority-lane alternative will be examined in terms of
its cost and benefits (time savings). All circled nodes are a set of
possible origins and destinations for the priority lanes. The goal is to
construct a set of priority lanes that connects PT stations, transfer
hubs, route start/end stops, and link one priority lane to other priority
lanes. By doing so, the PT network will be characterized by unin-
terrupted routes (such as 15–14-32–13-12–11-33), as opposed to the
construction of isolated priority lanes, which often experience traffic
bottlenecks in the form of non-prioritized sections."

The three objective functions (OF-s, OF-d, and OF-b) are good
representatives of social welfare, design qualities, and economic
considerations, respectively. Thus, they are non-redundant and also
cover the major aspects of PT network projects. Furthermore, these
objective functions represent the traditional PT stakeholders includ-
ing user, authority, and operator. The user seeks a well-connected
network (OF-d), which is attractive (OF-s), and can compete with the
private vehicle. The authority is concerned with efficient budget al-
location (OF-b) and its effect on the network characteristics (OF-s,
OF-d). Finally, the operator is concerned with revenues which are
affected by the network quality (represented by OF-d, and OF-s).

4.1. The formulation of the multi-objective problem

Objective functions

∑ ∑ ∑ ⋅ ⋅
( )

x v fmax
1i j k

i j
k

i j
k

i j, , ,

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬
⎭

∑ ∑
( )| = | =

px pxmax min min ,
2i x j x t

j t

s

s j

1 1

, ,

i j
k

i j
k

, ,

∑ ∑ ∑ ⋅
( )

x cmin
3i j k

i j
k

i j
k

, ,

subject to

∑ ≤ ∀ ∈
( )

x i j N1 ,
4k

i j
k
,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )∑ ∑ ∑− ⋅ ≥ = ∀ ∈

( )≠

x p px i j N1 0 ,
5k

i j
k

s t s
i j
s t s t

, ,
, ,

{ }= ( )x 0, 1 6i j
k
,

{ }= ( )px 0, 1 7
s t,

* For clarity, the index m was omitted.
Eq. (1) maximizes total time saving that results from using the

selected PT priority lanes (OF-s). Eq. (2) maintains a balanced
connectivity between the selected terminal nodes. This balance is
maintained by maximizing the minimal in-degrees and out-de-
grees (the number of nodes directly connected to/from a given
node) of all terminal nodes among all feasible solutions (OF-d). An
unbalanced priority lane set will impact the overall reliability of
the PT network and reduce the level of service. Eq. (3) minimizes
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budget allocation (Of-b) and constraint (4) maintains the selection
of one alternative. Constraint (5) ensures that if at least one path
(∑ ∑ ( × ) ≥ )≠ p px 1s s t i j

s t s t
,
, , from s to t is selected ( =px 1s t, ), then one

alternative (xi j
k
, ) for road segment ( )i j, must be selected given that

the road segment is part of a path from s to t ( =p 1i j
s t
,
, ). This con-

straint also maintains the continuity of each selected priority lane.
Constraints (6) and (7) define binary decision variables.

The model described above cannot be solved optimally for two
main reason: 1) The problem is a multi-objective optimization
problem; and 2) The problem is defined as an integer linear pro-
gramming problem, which is NP-Hard. This requires the use of a
heuristic algorithm for solving the problem.

4.2. The multi-objective evolutionary algorithm

In this paper, the Strength Pareto Evolutionary Algorithm 2
(SPEA2) (Zitzler et al., 2001), a technique for finding or approx-
imating the Pareto set for multi-objective optimization problems,
was used to find a set of non-dominated solutions. The algorithm
which was tested using the single objective formulation and test
cases presented in the original paper (Hadas and Ceder, 2014), was
found to be very efficient. SPEA2 uses an external set (archive) for
storing primarily non-dominated solutions. It is then combined
with the current population to form the next archive that is used
to create offspring for the next generation. To avoid a situation in
which individuals dominated by the same archive members have
identical fitness values, each individual i in the archive At and the
population Pt is assigned a strength value ( )S i , representing the
number of solutions it dominates. For each individual i, raw fitness

( )R i , determined by the strengths of its dominators in both the
archive and population, is calculated. For raw fitness, ( ) =R i 0
corresponds to a non-dominated individual while a high ( )R i value
means that i is dominated by many individuals. The raw fitness
may fail when most individuals do not dominate each other.
Therefore, additional density information is incorporated, based
on the kth nearest neighbor.

Algorithm – SPEA2.
In
put:
 N - Archive size
M - Offspring population size
T - Maximum number of generations
utput:
 *A - Non-dominated set
O

1. Initialization: Generate an initial population P0 and create the

empty archive (external set) =∅A0 . Set =t 0.
2. Fitness assignment: Calculate fitness values of individuals in Pt

and At .
3. Environmental selection: Copy all non-dominated individuals in

Pt and At to +At 1. If size of +At 1 exceeds N , then reduce +At 1 by
means of the truncation operator; otherwise, if size of +At 1 is
less than N , then fill +At 1 with dominated individuals in Pt and
At .

4. Termination: If ≥t T or another stopping criterion is satisfied,

then set *A to the set of decision vectors represented by the
non-dominated individuals in +At 1. Stop.

5. Mating selection: Perform binary tournament selection with
replacement on +At 1 in order to fill the mating pool.

6. Variation: Apply recombination and mutation operators to the
mating pool and set +Pt 1 to the resulting population. Increment
generation counter ( = +t t 1) and go to Step 2.

For the problem studied, a candidate solution must specify the
selected paths and the selected alternative for each node belong-
ing to the selected paths. A solution can be encoded using an array
of integers of a size equal to the number of nodes plus the number
of paths. This array is composed of two parts. The first part con-
tains information about the selected alternative for each node:
when 0 represents an unselected node, 1 indicates that the first
alternative was selected and so on. The second part contains in-
formation about the selected paths when 1 represents a selected
path and 0 otherwise. For the crossover operation, two parent
chromosomes are selected using tournament selection. Next, one-
site crossover, implemented on the second part of the parent
chromosomes, i.e., information about the selected paths, is used to
create two new chromosomes that contain a combination of paths
from both parents. For each new chromosome, information about
the nodes is updated based on the information present in the
parent chromosomes. Three types of mutation operations are used
in this research: (1) Remove path – This operation removes a path
and information about its associated nodes from a given solution;
(2) Add path – This operation adds a path and randomly fills in
information about its associated nodes to a given solution; and
(3) Change information – This operation randomly changes the
information of a node belonging to a selected path in a given
solution.

 

 

5. Multi-criteria approach for ranking and selecting solutions

5.1. Multi-criteria decision-making

This section demonstrates the use of multi-criteria decision-
making as a tool for aiding the DM to rank and select a preferred
solution based on the DM's preferences. Three such methods are
used in this section, AHP, TOPSIS, and a combined AHP-TOPSIS
method.

The Technique for Order of Preference by Similarity to Ideal So-
lution (TOPSIS) is a multi-criteria decision analysis method based
on the principle that the preferred solution should simultaneously
be closest to the ideal solution, *H , and farthest from the negative-
ideal solution, *L . The method uses an index that combines the
closeness of an alternative to the positive-ideal solution with its
remoteness from the negative-ideal solution. The alternative
maximizing this index value is the preferred alternative (Hwang
and Yoon, 1981). Mathematically, given a payoff matrix, θ , of size n
by m, when n are the alternative solutions and m are the values of
criteria for alternative, the first step of the TOPSIS method is
normalizing this matrix, getting a new matrix, R, such that

( )θ θ= ∑r /ij ij i ij
2 0.5

. Next, a weighted pay-off matrix, Q , is computed
such that λ=q rij j ij, when λj is the relative importance weight of the

jth criteria. Next, the ideal and anti-ideal solutions are calculated

as follows, { } { }* = * = … = ∀ = …H q j n Maxq i j n, 1,2, , , , 1,2, ,j ij

and { } { }* = * = … = ∀ = …L q j n Minq i j n, 1,2, , , , 1,2, ,j ij . Then, for

each solution, separation measures (the distance from the ideal
and negative-ideal solutions) are calculated, meaning

⎡
⎣⎢

⎤
⎦⎥( )* = ∑ − * = …P q q i m, 1,2,i i ij j

2 0.5

and
⎡
⎣⎢

⎤
⎦⎥( )* *= ∑ − = …P q q i m, 1,2,i i ij j

2 0.5

.

TOPSIS identifies the preferred solution by minimizing the simi-
larity index, D, which equals the ratio between the distance from
the negative-ideal solution and the sum of distances from the ideal
and negative-ideal solutions in the following way:

= * ( * + *) = …D P P P i m/ , 1,2, ,i i i i . All solutions are ranked by their
index values. A solution with a higher index value is preferred over
one with index values smaller than its value.

TOPSIS is a good method due to its simplicity and ability to
consider a non-limited number of alternatives and criteria in the 



Fig. 4. Petah Tikva's street and PT network with potential road segments and terminals.
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decision making process. On the other hand, the TOPSIS method
requires a weight vector, stating the importance of each criterion
compared to all others. For large number of criteria, the weight
vector might include inconsistencies. Therefore, the AHP method,
described next in this chapter, is used as well.

The Analytic Hierarchy Process (AHP) considers a set of evalua-
tion criteria and a set of alternative options among which the best
decision is to be made. It is assumed that there are n alternatives,

…C C, , n1 , to be compared, and m criteria for evaluating each alter-
native. First, a pairwise comparison between all alternative solu-
tions is performed with respect to the first criteria. This means
that every two alternatives, Ci and Cj are assigned a relative weight
to each other (or priority or significant) denoted as aij, which

eventually form a square matrix ( )=A aij of order n with the con-

straints that =a a1/ij ji for ≠i j, and =a 1ii , for all i, known as the
pairwise comparison matrix. The matrix A s considered consistent
if =a a aik ij jk for all i, j and k. Next, a vector ω of order n such that

ω=λωA , is found. In the case of AHP, ω is an eigenvector (of order n)
and λ is an eigenvalue, which, for a consistent matrix, equals n.
When the matrix A is not consistent, the ω vector has to satisfy

ω λ ω=A max and λ ≥nmax . Since human nature is often inconsistent,
the entries are checked to detect possible contradictions. When
several successive pairwise comparisons are presented, they may
contradict each other. This may, among other causes, be due to
insufficient or uncertain information, vaguely defined problems, or
lack of concentration. AHP defines a measurement called the
“Consistency Ratio” (CR) which is the ratio between the incon-
sistency found in the entries (CI) and the average inconsistency of
500 randomly filled matrices (random index). If the value of the CR
is smaller or equal to 10%, the inconsistency is acceptable. The
Consistency Index, CI , can be calculated from λ( ‐ ) ( ‐ )n n/ 1max . To
create a full AHP model, the process should be repeated for all
criteria. In the last step the synthesis is obtained by multiplying
preferences for all criteria by the choice selections within each
criteria (Kniaz, 2015; Saaty, 1977; Teknomo, 2015).

Finally, a combined AHP-TOPSIS method is introduced. Following
the advantages of AHP's pairwise comparison over traditional
weight assignment methods, the present approach proposes
basing the TOPSIS ranking on the AHP weight vector.

5.2. Group decision-making

One of the main obstacles for implementing a transportation
plan is the different objectives set by the stakeholders, specifically
both the local and national authorities as well as users. This can
lead to disagreement concerning the recommended plan (or so-
lution). As a consequence decisions might not be made or stake-
holders might be dissatisfied. The problem is intensified if multiple
available solutions are all feasible and non-dominated. On the
other hand, it is possible to utilize group decision-making (GDM)
in order to select a compromise solution. Hwang and Lin (2012)
provide a comprehensive review of GDM techniques and models.
They classify GDM in three groups: social choice theory, expert
judgment, and game theory. According to social choice theory,
each decision-maker casts a vote to select an alternative. Each
alternative is analyzed by each voter based on multiple criteria and
the selection is based on the group voting process. Expert judg-
ment (or group participation) is characterized by the suggestion of
solutions by experts; the consideration of different points of view;
and the selection of a solution based on a joint agreement, polling,
surveys, brainstorming, etc. When a conflict of interest arises,
Game theory is useful as the players deploy strategies in order to
address the payoff function of the game.

GDM and MCDM share some common characteristics. MCDM
problems aim at finding good performance of the complete set of
criteria, while GDM problems aim at obtaining a ranking which
satisfies all players. Both types of problems share the concept of an
ideal solution, which is often unfeasible. This also applies to the
concept of dominance. When the ideal solution is not feasible, a
decision-maker's preferences must be modeled on multiple cri-
teria (in MCDM), or the group decision-maker's preferences on
multiple players (in GDM), in order to find the best solution
(Leyva-Lopez and Fernandez-Gonzalez, 2003).

Our selection model is based on a voting mechanism (social
choice) for the following reasons: 1) It combines the final decision
of each of the DMs, not his judgment, which Saaty (2008) found
highly important; 2) Each DM previously ranked an optimal 



Fig. 5. the Pareto-front solution set and the relationship between budget, degree
and saving.

Table 1
Optimal results for different scenarios.

Budget Degree Saving

Fixed Saving

118M 0

3.9 M
121M 1
122M 2
123M 4
124M 5
126M 7

Fixed Degree

53M

6

3.4M
75M 3.6M
96M 3.8M
106M 3.8M
119M 3.9M

Fixed Budget

100M
3 3.8M
7 3.8M
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solution set based on his or her preferences; 3) The present ap-
proach seeks a solution that will be easily accepted by all DM's.

In cases in which a group of voters are supposed to choose a
preferred alternative over the set of alternatives and each voter
ranks the alternatives in a different order of preference, an aiding
mechanism can be used. In such cases, rather than choosing an
alternative preferred by a majority, a consensus-based alternative
is chosen. One of the best, if not among the best consensus-based
voting procedures is the Borda Count method (Zahid and de Swart,
2015). The Borda function is homogeneous, monotonic, Pareto
optimal, anonymous, and neutral (Hwang and Lin, 2012).

The Borda Count (BC) method defines consensus functions by
mapping a set of individual rankings to a combined ranking, called
Risk Rank (RR). To do that for every voter ∈j N , each alternative
solution ∈i M is given a ranked value, Rij, such that the most
important alternative is given the value of one, the second im-
portant alternative is given the value of two and so on. If two or
more alternatives are considered equally important, they all are
given the same value, which is the average value of their rankings.
After all alternative solutions are ranked by all votes, the Risk Rank
of each alternative ∈i M can be calculated such that

= ∑ −=RR M Rj
N

ij1 . The most preferred alternative is the alternative
with the highest value of RR. Similarly, the least preferred alter-
native is the alternative with the lowest value of RR.

The Borda Count method is easy to implement and does not
require any training. The method treats all classifiers equally and
does not take into account individual classifier capabilities, a dis-
advantage that can be addressed by applying different weights for
every classifier (which may require additional training), and cal-
culating the BC as a weighted sum of a number of classes (Ruta and
Gabrys, 2000).

 

 

6. Case study

6.1. Highlights from the original case study

The present case study re-examines a previous study (Hadas
and Ceder, 2014). That study was conducted as part of a proposal
submitted to the Israeli Ministry of Transport and Road Safety
(Ministry of Transport and Ministry of Treasury, 2011). For the sake
of clarity, the following is a brief description of the earlier case
study.

Petah Tikva is the fifth largest city in Israel with 211,000 re-
sidents, and an area of 36 km2. The city is located in Israel's largest
metropolitan area (Gush-Dan). As of 2010, the compound annual
growth rate of the Petah Tikva population was 3.3% (compared to
1.5% for the entire population of Israel). Based on the 2008 census
(Central Bureau of Statistics, 2008), 49% of Petah Tikva's residents
worked in the city (�50,000), while an additional 84,000 in-
dividuals commuted from other cities. As of 2008, 26% of these
commuters travelled on public transportation (PT). One bus op-
erator serves the city's urban PT network. All routes share the road
with private and commercial vehicles. A light rail transit (LRT) line
is being developed to connect the city's central bus station to other
municipalities in the metropolitan area. This is indicated in Fig. 4
by a red line. Some of the major points of interest, such as bus
terminals and industrial parks are illustrated as well. The following
steps were implemented in the previous case study: 1) Possible
road segments were selected for use as priority lanes, as well as
terminals to serve as start and end points for these lanes (see
Fig. 4). 2) Costs and benefits were estimated based on the proposal
guidelines of the Ministry of Transport and Ministry of Treasury
(2011). Costs and benefits were calculated as construction costs
(USD) per km, and annual time saved (ATS) for distance travelled, 



Table 2
Decision-maker preferences.

DM Criteria Weights Pairwise comparison Range (M$) Solution set size

Budget Saving Degree CR

1 (authority) Budget 3 1 5 3 0.4% 30–50 14
Saving 10 0.2 1 0.5 40
Degree 8 0.333 2 1 40

2 (user) Budget 7 1 5 8 0.6% 40–60 31
Saving 8 0.2 1 2 40
Degree 10 0.125 0.5 1 40

3 (authority) Budget 3 1 5 5 0% 30–50 14
Saving 10 0.125 1 1 40
Degree 10 0.125 1 1 40

4 (user) Budget 1 1 9 7 8.4% 45–60 29
Saving 10 0.111 1 0.333 40
Degree 7 0.142 3 1 40

Table 3
DM #1 - Solutions ranking.

No. Budget Degree Saving AHP TOPSIS AHP-TOPSIS

9 47,560 13 3,281,674 1 1 1
5 42,479 11 3,236,502 2 4 2
4 41,071 9 3,335,523 3 9 9
7 45,406 11 3,268,631 4 6 6
11 48,880 12 3,367,782 5 2 3
10 48,366 12 3,305,832 6 3 5
8 47,405 11 3,349,103 7 5 4
6 45,242 10 3,363,844 8 8 7
12 48,894 11 3,382,294 9 7 8
3 39,924 5 3,263,791 10 11 10
2 38,224 4 3,077,972 11 14 13
13 49,668 5 3,382,540 12 10 11
1 37,721 1 2,784,613 13 13 14
14 49,817 4 3,412,336 14 12 12

Table 4
DM #2 - Solutions ranking.

No. Budget Degree Saving AHP TOPSIS AHP-TOPSIS

2 42,479 11 3,236,502 1 10 1
1 41,071 9 3,335,523 2 21 2
6 47,560 13 3,281,674 3 1 5
4 45,406 11 3,268,631 4 11 3
3 45,242 10 3,363,844 5 18 4
7 48,366 12 3,305,832 6 3 7
5 47,405 11 3,349,103 7 12 6
8 48,880 12 3,367,782 8 4 8
13 51,028 13 3,324,070 9 2 10
9 48,894 11 3,382,294 10 13 9
14 51,173 12 3,401,525 11 6 11
22 54,235 13 3,357,861 12 5 14
16 52,164 11 3,415,455 13 14 13
29 56,070 13 3,500,749 14 7 19
25 55,023 12 3,407,849 15 8 18
20 53,788 11 3,441,195 16 15 16
12 50,445 9 3,396,230 17 22 12
28 55,985 12 3,413,562 18 9 22
23 54,397 11 3,442,082 19 16 20
19 53,775 10 3,419,026 20 19 21
30 58,637 11 3,508,101 21 17 26
10 49,668 5 3,382,540 22 25 15
18 53,120 7 3,447,309 23 23 23
31 59,879 10 3,539,263 24 20 27
11 49,817 4 3,412,336 25 29 17
17 52,411 5 3,416,734 26 26 24
27 55,175 6 3,466,875 27 24 29
15 52,134 4 3,426,225 28 30 25
24 54,865 5 3,474,573 29 28 30
26 55,025 5 3,494,307 30 27 31
21 54,134 4 3,451,799 31 31 28
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respectively. 3) A set of solutions based on the single objective
model was constructed for several budget and degree combina-
tions. 4) A preferred solution was selected based on a qualitative
assessment by the DMs.

6.2. Multi-objective model results

The optimal multi-objective model for priority lane selection
was solved. The result is a set of non-dominated solutions from
which the decision-maker can select a single solution based on a
set of preferences. The following conclusions can be drawn from
the two Pareto-front graphs presented in Fig. 5: 1) When the
budget is low, up to about $38M, the degree for all solutions is 0.
This indicates that not all terminals are connected because when
the budget is low, it is impossible to connect them all. As the
budget increases, more options are available for selection. 2) As
the budget increases, the saving increases as well. 3) The benefits
of the minimal connected network (degree¼1) are at least a sav-
ing of 2.8M. 4) Connectivity of degree 6 and higher has a negative
effect on savings, as the budget is shifted from high saving seg-
ments to low saving segments in order to increase the degree.
Table 1 summarizes the results of selected scenarios. Each scenario
includes a budget, saving, and degree. The selected scenarios
provide the decision-maker with three clusters of solutions. In
each cluster, one objective is set as fixed while the other two are
variable. For example, for a fixed saving (3.9M), and a degree range
of 0–7, the required budget is presented. It can be observed that for
higher connectivity (degree), a larger budget is required.
6.3. Multi-criteria ranking and selecting

An online questionnaire was distributed among PT decision-
makers and stakeholders (authorities, operators, and users). This
process was aimed at simulating the ranking and selecting of
preferred solutions from the above-mentioned set of non-domi-
nated solutions. The DMs were asked to assign weights to the
three criteria (to be used with TOPSIS) and to provide a pairwise
comparison of these criteria (to be used with AHP), and the range
of feasible solutions. Table 2 summarizes the preferences of the
DMs. The first two DMs were only asked to assign weights to the
criteria, while the last two were requested to rank the solutions
independently and later asked to comment on the three automatic
ranking methods.

The first three DMs share a low CR, while the fourth DM has a 



Table 5
DM #3 - Solutions ranking.

No. Budget Degree Saving AHP TOPSIS AHP-TOPSIS USER

14 49,817 4 3,412,336 1 1 12 12
13 49,668 5 3,382,540 2 2 11 10
1 37,721 1 2,784,613 3 9 14 14
2 38,224 4 3,077,972 4 11 13 13
3 39,924 5 3,263,791 5 10 10 11
12 48,894 11 3,382,294 6 14 7 4
8 47,405 11 3,349,103 7 6 6 5
11 48,880 12 3,367,782 8 3 3 2
6 45,242 10 3,363,844 9 7 8 8
10 48,366 12 3,305,832 10 13 2 3
7 45,406 11 3,268,631 11 12 5 6
9 47,560 13 3,281,674 12 4 1 1
4 41,071 9 3,335,523 13 5 9 9
5 42,479 11 3,236,502 14 8 4 7

Table 6
DM #4 - Solutions ranking.

No. Budget Degree Saving AHP TOPSIS AHP-TOPSIS USER

13 59,879 10 3,539,263 1 7 25 1
5 58,637 11 3,508,101 2 4 5 3
24 55,025 5 3,494,307 3 17 17 4
17 54,865 5 3,474,573 4 13 16 5
26 54,134 4 3,451,799 5 12 18 10
3 55,175 6 3,466,875 6 10 8 6
9 52,134 4 3,426,225 7 6 13 12
28 52,411 5 3,416,734 8 9 9 15
20 55,985 12 3,413,562 9 23 1 14
11 53,120 7 3,447,309 10 8 20 7
21 56,070 13 3,500,749 11 11 11 2
22 55,023 12 3,407,849 12 3 24 17
14 54,397 11 3,442,082 13 27 19 8
15 53,775 10 3,419,026 14 15 15 11
8 53,788 11 3,441,195 15 2 27 9
19 54,235 13 3,357,861 16 29 23 24
18 49,817 4 3,412,336 17 15 6 16
12 49,668 5 3,382,540 18 14 29 20
7 52,164 11 3,415,455 19 20 2 13
23 50,445 9 3,396,230 20 24 3 19
4 51,173 12 3,401,525 21 16 14 18
10 51,028 13 3,324,070 22 5 22 26
27 48,894 11 3,382,294 23 26 28 21
2 48,880 12 3,367,782 24 19 4 22
6 48,366 12 3,305,832 25 22 7 27
25 47,405 11 3,349,103 26 28 26 25
16 47,560 13 3,281,674 27 1 10 28
1 45,406 11 3,268,631 28 21 21 29
29 45,242 10 3,363,844 29 18 12 23

Table 7
The Borda Count overall ranking.

No. Budget Degree Saving AHP-TOPSIS BC Score

DM 1 DM 2 DM 3 DM 4

1 47,560 13 3,281,674 1 3 1 4 27
2 48,880 12 3,367,782 2 6 3 1 24
3 48,366 12 3,305,832 4 5 2 3 22
4 45,406 11 3,268,631 5 1 4 6 20
5 47,405 11 3,349,103 3 4 5 7 17
6 45,242 10 3,363,844 6 2 7 5 16
7 48,894 11 3,382,294 7 7 6 8 8
8 49,817 4 3,412,336 9 9 9 2 7
9 49,668 5 3,382,540 8 8 8 9 3
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borderline CR. The following analysis explains the fourth DM's
inconsistency. Both AHP and TOPSIS methods were used to sort
the solutions based on DM preferences. Weights were also
calculated from the pairwise comparison matrices and were used
with the TOPSIS algorithm, (AHP-TOPSIS). The results are listed in
Tables 3–6.

As can be seen from the results, the AHP and TOPSIS re-
commendations are inconsistent with similar extreme rankings.
This is due to the different weighting techniques used. TOPSIS is
based on a traditional weighting of all objective functions while
AHP is based on a pairwise comparison. The latter has the benefit
of a more focused weighting technique and consistency analysis.
This is evident from the combined TOPSIS-AHP ranking that in-
corporates the AHP weighting with the TOPSIS ranking. This
method, which has similar results to AHP, strengthens the ad-
vantages of AHP.

For an in-depth analysis, the third and fourth DMs were asked
to independently rank the solution set (column "USER" in Ta-
bles 5,6), and upon completion to comment on the TOPSIS-AHP
ranking results.

For the third DM, the results show that the TOPSIS-AHP
method is very similar to the DM's rankings. Next, the DM was
asked for his opinion about the results of both the AHP and TOP-
SIS-AHP methods. The DM stated that both rankings are logical,
and that he agrees with the prioritization they offer in which
savings in time are elevated and costs are minimized. Moreover,
the DM said that the difference between the methods is the
weight of connectivity [degree]. (TOPSIS-AHP gives more emphasis
to the connectivity objective than TOPSIS.) In this context, the DM
said that he tended to agree with the TOPSIS ranking because he
thought that a good network should first of all offer a good con-
nectivity, as passengers do not like to make transfers.

The fourth DM analysis is less conclusive, with dissimilarities
between the rankings. When asked to comment on the differ-
ences, he admitted that his own ranking was based solely on the
savings aspects with his weights (both AHP and TOPSIS) ac-
counting for the importance of connectivity (degree). It can be
argued that the DM did not fully understand the objective func-
tions, as the CR clearly indicates.

Finally, the Borda Count method was used to provide a con-
sensus ranking of the various alternatives selected by the four
DMs. The first stage was to select all alternative solutions that the
DMs had ranked. Next, for each DM, the alternatives were ranked
based on the results of the AHP-TOPSIS analysis, which in turn was
used by the Borda Count method to obtain an overall ranking.
Table 7 summarizes the ranking based on the Borda Count score.
The highest ranked solution was selected as the 1st solution by
two DMs, and as the 3rd and 4th solutions by the other two. This
solution can easily be accepted by all stakeholders as a viable
compromise solution.

 

 

7. Concluding remarks

This study presents a novel, multi-objective and multi-criteria
approach for finding a compromise solution in selecting priority
lanes for a public transport network.

This framework has the following advantages. 1) It provides a
multi-objective model that incorporates several objective func-
tions representing the different perspectives of relevant stake-
holders. It is well-known that disagreement among stakeholders
can hamper and delay the selection of a transportation alternative
from a set of solutions. The proposed framework provides an
analytical approach which systematically selects an optimal solu-
tion set, ranks the solution set for each DM, and chooses a solution
acceptable to all DMs. The use of an optimal solution set for the
MCDM model has a clear advantage over the traditional use of an
alternative set. The alternative set is not necessarily a non-domi-
nated solution set. Therefore it is possible that the ranking will be 
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based on non-optimal solutions. 2) It introduces an original AHP-
TOPSIS ranking methodology which can easily rank a solution set
based on the stakeholder's multi-criteria preferences, while as-
sessing the stakeholder's consistency in prioritizing the objectives;
3) It provides a GDM tool for selecting a solution that will be ac-
ceptable to all parties involved.

The applicability of the model was demonstrated by the case
study. The DMs easily adopted the methodology of weighting each
objective function and assessing the ranking. They also accepted
the results. Furthermore, the framework is transferable to other
domains, since the MO, MCDM, and GDM components are generic
in nature.

Future research can pursue several directions. 1) Other objec-
tive functions can be added, such as minimizing parking space
reduction, or minimizing delay of other transport modes. This is
possible since the optimization model can easily handle numerous
objective functions, while the ranking models eliminate the need
to manually assess the Pareto front. 2) The model can be in-
tegrated with an assignment model. The proposed model lacks the
direct assessment of the impact on other modes of transport
(specifically private vehicles), but an extended model can be de-
veloped in order to overcome that issue. The extended model will
have an additional stage (after the optimization, and before the
MCDM and GDM). Since the model provides the complete Pareto
front, which is only a subset of all feasible solutions, traffic as-
signment can be performed much more efficiently. Furthermore,
the assignment results will be represented by an additional ob-
jective function, the effect on other modes of transportation.
Therefore, in contrast to the common aggregation of total time
change, the suggested model will provide the policymaker the
opportunity to assess the complete non-dominated set by the
MCDM and GDM stages. 3) The model can be integrated with route
design and time-tabling.
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