
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Fault-tolerant Mobile Agent-based Monitoring Mechanism for
Highly Dynamic Distributed Networks

Jinho Ahn1

 1 Dept. of Computer Science, College of Natural Science, Kyonggi University
Suwon, Gyeonggi-do 443-760, Republic of Korea

Abstract

Thanks to asynchronous and dynamic natures of mobile agents, a
certain number of mobile agent-based monitoring mechanisms
have actively been developed to monitor large-scale and
dynamic distributed networked systems adaptively and
efficiently. Among them, some mechanisms attempt to adapt to
dynamic changes in various aspects such as network traffic
patterns, resource addition and deletion, network topology and so
on. However, failures of some domain managers are very critical
to providing correct, real-time and efficient monitoring
functionality in a large-scale mobile agent-based distributed
monitoring system. In this paper, we present a novel fault-
tolerance mechanism to have the following advantageous
features appropriate for large-scale and dynamic hierarchical
mobile agent-based monitoring organizations. It supports fast
failure detection functionality with low failure-free overhead by
each domain manager transmitting heart-beat messages to its
immediate higher-level manager. Also, it minimizes the number
of non-faulty monitoring managers affected by failures of
domain managers. Moreover, it allows consistent failure
detection actions to be performed continuously in case of agent
creation, migration and termination, and is able to execute
consistent takeover actions even in concurrent failures of domain
managers.
Keywords: Distributed Network, Fault-tolerance, Mobile Agent,
Scalability, Takeover.

1. Introduction

Recently, as the number of users of distributed systems
and networks considerably increases with the increasing
complexity of their services and policies, system
administrators attempt to ensure high quality of services
each user requires by maximizing utilization of system
resources [5]. To achieve this goal, correct, real-time and
efficient management and monitoring mechanisms are
essential for the systems. But, as the infrastructures of the
systems rapidly scale up, a huge amount of monitoring
information is produced by a larger number of managed
nodes and resources and so the complexity of network
monitoring function becomes extremely high [1]. Also,
there are heterogeneous and various network

environments within the systems needed to be monitored
and the nature of managed resources becomes almost
dynamic, not static, which forces traditional static
centralized and distributed monitoring mechanisms to be
unsuitable for the systems [10]. Thus, mobile agent-based
monitoring mechanisms have actively been developed to
monitor these large scale and dynamic distributed
networked systems adaptively and efficiently.
Mobile agent is an autonomous and independent software
program to satisfy the corresponding user’s goal on behalf
of the user while visiting various target nodes through a
network [3]. This mobile agent technology has several
advantages such as reduction of network traffic,
overcoming of network delay, enabling asynchronous
execution and enhancement of dynamic adaptability.
Thanks to these desirable features, this technology is very
widely used in distributed systems, especially for network
management. In a network management system, each
mobile agent is generally designed to move to one or more
agent-executable nodes in a network, sense temporally and
permanently other nodes and resources, and filter and
deliver the received management information to the
appropriate network management nodes [10].
The previous mobile agent-based monitoring mechanisms
are classified as follows: centralized and hierarchical
distributed monitoring mechanisms. Most of them are
based on the centralized monitoring model and divided
into two categories, single mobile agent-based and
segment-based mechanisms. In the first [11], a single
management station creates a mobile agent and allows the
agent to sequentially visit the required nodes in a
particular order. This mechanism is simple to implement,
but causes the task completion time of a mobile agent to
become too long in large-scale distributed systems because
the number of visiting nodes significantly increases and
the size of the agent may grow considerably. In particular,
if the visiting nodes are interconnected through low-
bandwidth links, the round-trip delay may extremely
increase. Secondly, the segment-based mechanism [2]
partitions a network into several sub-networks or domains,
and creates and transfers a mobile agent to each domain
respectively. Therefore, the collection and filtering of the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

2

management information for monitored nodes can be
performed in parallel per domain, which addresses the
scalability problem of the first mechanism to a certain
extent. However, in this mechanism, the single manager
should execute all the monitoring function and may
become the performance bottleneck of the entire system.
In addition, if the agent migration network includes
expensive low bandwidth links, it is very difficult to
perform the procedure to obtain and filter the monitoring
information in real-time.
To solve the scalability problem, mobile agent-based
mechanisms using hierarchical monitoring structure [6, 7]
were proposed. They allow a network to be partitioned
into a set of domains organized hierarchically and deploy
a new monitoring agent to each domain. In this hierarchy,
a main manager is at the top-level (level 1) and delegates
monitoring tasks with monitoring agents to the lower level
domain managers. Each manager clones and dispatches a
monitoring agent to the appropriate domain manager node
considering load redistribution of monitoring tasks. In this
case, each domain manager collects the management
information from the lower-level managers and filters and
delivers the processed information to its higher-level
manager. The original hierarchical monitoring
mechanisms were almost based on a static manager
organization model. In other words, each network
administrator configures a tree of network domains
according to its initial monitoring policy and then the main
manager at the root domain creates and migrates
monitoring manager agents to other domains. However, if
any dynamic changes in various aspects such as network
traffic patterns, resource addition and deletion, network
topology and so on occur, this mechanism cannot adapt to
these changes and will degrade significantly the entire
management performance. There were presented some
adaptive mobile agent-based mechanisms [8] to address
this important issue. In these mechanisms, if each domain
manager at level i estimates the need for some additional
monitoring capability at run-time, it creates and installs a
new manager agent to an appropriate node at level i+1 or
migrates to another node for keeping location optimality
of its network monitoring.
However, failures of some domain managers even
assuming the main manager can be reliable using
replication-based fault-tolerance mechanisms are very
critical to providing correct, real-time and efficient
monitoring functionality in a large-scale mobile agent-
based distributed monitoring system. To the best of our
knowledge, the fault-tolerance mechanism proposed in
[13] is the only one to address this issue. But, in this
mechanism, every agent should periodically send heart-
beat messages to global failure detection agents (GFDAs).
If the GFDA receives no heart-beat message from an agent
for a predefined number of consecutive timeout intervals,

it generates and delivers an AgentFailure message to a
global recovery agent (GRA). Afterwards, the GRA
recreates a new agent based on its most recent
configuration information and redeploys it to the
appropriate target host. However, this behavior results in
high failure-free overhead due to the centralization of
failure detection functionality in a single point within a
large-scale hierarchical monitoring organization.
Additionally, the takeover procedure performed by GRAs
is much unsuitable for maintaining a tree-like manager
structure efficiently. Also, this mechanism includes no
concrete method to detect failures of manager agents
correctly in case of agent creation, migration and
termination triggered by dynamic changes in a network.
This paper proposes a novel fault-tolerance mechanism to
have the following desirable features appropriate for large-
scale and dynamic hierarchical mobile agent-based
monitoring organizations:

•Support fast failure detection functionality with low
failure-free overhead by each domain manager
periodically transmitting heart-beat messages to its
immediate higher-level manager.
•Minimize the number of non-faulty monitoring managers
affected by failures of domain managers.
•Enable consistent failure detection actions to be
performed continuously in case of agent creation,
migration and termination.
•Can execute consistent takeover actions even in
concurrent failures of domain managers.

The remainder of this paper is organized as follows. In
sections 2 and 3, we describe our proposed mechanism in
both conceptual and algorithmic ways, and show its
correctness proof. Section 4 compares the proposed
mechanism with the existing ones in detail and section 5
concludes this paper.

2. The Proposed Mechanism

In the following subsections, data structures and
algorithms of the proposed mechanism are described
informally.

2.1 Data structures

Every domain monitoring manager α has to keep the
following three variables.
•AIDα: it is the agent identifier of domain manager α.
•MMaddrα: it is the main manager’s identifier needed
when domain manager α is created or the organization of
its lower-level managers changes.
•IHMaddrα: it is the immediate higher-level manager’s
identifier of domain manager α.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

3

•ptrα: it is the root node of a tree for saving the identifier
and timer of every lower-level manager of main or domain
monitoring manager α. Its node is a tuple (aid, tinterval,
ptr). tinterval for each lower-level manager aid is used so
that monitoring manager α detects whether its lower-level
manager aid is alive or failed, and is initialized to τ . ptr
for its lower-level manager aid is the next-level node
maintaining references for all lower-level managers of the
domain manager aid in a hierarchical manner.

2.2 Informal Description

Fig.1 In case of another DM being required.

Every domain manager α periodically transmits each
heartbeat message only to its immediate higher-level
manager IHMaddrα. Therefore, each monitoring manager
can know which ones fail or are alive among its immediate
lower level managers by their periodic notification. In our
mechanism, the manager α decrements the timer tinterval
for its corresponding immediate lower-level manager aid
in ptrα by one every certain time interval. If α has not
received any heart-beat message from the lower-level

manager until the timer expires, it suspects that the lower-
level manager crashes. This behavior results in low
failure-free overhead incurred by failure detection by
utilizing the tree-like organization of monitoring managers
effectively.
If a monitoring manager determines that a new one is
needed as its immediate lower-level manager for effective
monitoring, it creates a new mobile agent for this like
figure 1. In this figure, manager DMx has a monitoring
agent spawned and transferred to a new node DMz. The
agent initiates its monitoring task and notifies of its
location all nodes on the path between the main manager
MM and itself. When a manager knows that it cannot play
its role well and effectively for guaranteeing the
monitoring performance required, it is voluntarily replaced
by agent migration like in figure 2. In this figure, after
manager DMz has made the same decision mentioned
above, it finds an appropriate substitute node DMα and
forces its agent to migrate to the substitute, where the
agent resumes its monitoring task. If a manager detects
some immediate lower-level managers has failed, it
activates our takeover procedure.

Fig.2 In case of DM replacement by agent migration.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

4

At this point, there can occur among three cases depending
on availability and capability of nodes. First, like in figure
3, when MM recognizes DMw’s failure and a new node
DMγ is its suitable substitute, the main manager creates
and transfers a new monitoring agent with the same role to
node DMγ. Then, it performs the same monitoring function
the failed node DMw executed, and inform its immediate
lower-level managers, e.g., DMx of this replacement.
Second, when a manager DMγ identifies the failure of its
next-level manager DMx in figure 3 and there is no
available node for replacing the failed one, it checks
whether among DMx’s immediate lower-level managers
DMy and DMα, there exists a proper one as DMx’s
replacement.

Fig.3 In case of a new DM taking over failed DM’s task.

If DMγ determines that DMy is just suitable for the role, it
allows DMy to take over DMx’s task like in figure 4. In this
case, DMy notifies DMx’s other immediate lower-level
managers of this substitution and updates its location on

all nodes on the path between the main manager MM and
DMx. As the last case, when there is neither any new nor
lower-level manager capable of being substituted for the
failed one DMx in figure 3, DMx’s immediate higher-level
manager DMγ takes over DMx’s role aside from DMγ’s
own task in figure 5. Also, the mechanism performs the
consistent takeover procedure even in case of concurrent
failures of domain managers.
Algorithmic description of the failure detection and
takeover procedures for main or domain manager Self in
our mechanism are formally given in figures 6 and 7.

Fig.4 In case of an existing DM taking over failed DMs task.

3. Correctness Proof

This section shows theorems 1 and 2 to prove safety and
liveness of our proposed mechanism in order.

Theorem 1. Even if multiple domain managers crash
concurrently, our mechanism enables other live managers
to monitor all the network elements previously managed
by the failed ones.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

5

Proof: Suppose that the entire distributed monitoring
system consists of a finite set N of monitoring managers
whose size is n and there is the set of all crashed domain
managers, denoted by SCDM. The proof proceeds by
induction on the number of all the crashed domain
managers in SCDM, denoted by |SCDM| (|SCDM| < n).

Fig.5 In case of the immediate higher-level DM taking over failed DMs.

Fig.6 Failure detection and takeover procedures for manager Self.

 [Base case] As |SCDM|=1, there is only one crashed
domain manager DMx. In this case, the following three
cases should be considered.

Case 1: there is a new available domain manager DMγ
capable of taking over DMx.
In this case, after detecting DMx’s failure, the immediate
higher level manager of DMx creates and transfers a new
monitoring agent with the same role to node DMγ. Then,
DMγ performs the same monitoring function the failed
node DMx executed, and inform DMx’s immediate lower-
level managers of this replacement and updates its location
on all nodes on the path between the main manager and
DMx.

procedure CHECK_AGENTLIVENESS()

failedMngrs ← invoke DECR_TINTERVAL() on Self ;
for all fmngr in failedMngrs do

if(there is a new node nmngr as an appropriate substitute
for fmngr) then

invoke MNGR_TAKEOVER(fmngr) on nmngr ;
send a message Change_IHigherLevelMngr(AID Self)
to nmngr ;

else if(there is a suitable substitute lmngr for fmngr
among its immediate lower-level managers) then

invoke MNGR_TAKEOVER(fmngr) on lmngr ;
send a message Change_IHigherLevelMngr(AID Self)
to lmngr ;

else invoke MNGR_TAKEOVER(fmngr) on Self ;

procedure DECR_TINTERVAL()

failedMngrs ←  ;
for all e in ptrSelf do

e.tinterval ← e.tinterval - 1 ;
if(e.tinterval = 0) then

failedMngrs ← failedMngrs U {e} ;
ptrSelf ← ptrSelf - failedMngrs ;
return failedMngrs ;

procedure MNGR_TAKEOVER(fmngr)
for all e in fmngr.ptr do

ptrSelf ← ptrSelf U {(e.aid, e.ptr, τ)} ;
send a message Change_IHigherLevelMngr(AID Self)
to e.aid ;

send a message Change_TreeTopologyAtMMngr(AID Self,
ptrSelf) to MMaddrSelf ;

procedure CHANGE_TREETOPOLOGYATMMNGR(AID,
ptr)

find a path mngrs to AID in ptrSelf ;
find a node e in ptrSelf st (e.aid = AID); e.ptr ← ptr ;
NLMngr ← the first element e in mngrs ;
mngrs ← mngrs - {e} ;
send a message Change_TreeTopology(mngrs, AID, ptr)
to NLMngr ;

procedure CHANGE_TREETOPOLOGY(mngrs, AID, ptr)

find a node e in ptrSelf st (e.aid = AID) ;
e.ptr ← ptr ;
if(mngrs = ) then

NLMngr ← the first element e in mngrs ;
mngrs ← mngrs - {e} ;
send a message Change_TreeTopology(mngrs, AID, ptr)
to NLMngr ;

procedure CHANGE_IHIGHERLEVELMNGR(AID)

IHMaddrSelf ← AID ;

procedure NOTIF AGENTALIVEMSG()

send a message Update_AgentTInterval(AIDSelf)
to IHMaddrSelf ;

procedure UPDATE AGENTTINTERVAL(AID)
for all e in ptrSelf do

if(e.aid = AID) then e.tinterval ← τ ;
return ;

procedure MIGRATE AGENTTONEWNODE(nmngr)

invoke MNGR TAKEOVER(AIDSelf) on nmngr ;
send a message Change_IHigherLevelMngr(IHMaddrSelf)
to nmngr ;

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

6

Fig.7 Failure detection and takeover procedures for Self (continued).

Case 2: among DMx’s immediate lower-level managers,
there is a proper one DMγ as DMx’s substitute.
In this case, DMx’s immediate higher level manager allows
DMγ to take over DMx’s task and notifies DMx’s other
immediate lower-level managers of this substitution and
updates its location on all nodes on the path between the
main manager and DMx.
Case 3: there is neither any new nor lower-level manager
capable of being substituted for DMx. In this case, DMx’s
immediate higher-level manager DMγ takes over DMx’s
role aside from DMγ’s own task. The subsequent
procedure is the same as in case 2.
[Induction hypothesis] We assume that the theorem is
true in case that |SCDM|=k.
[Induction step] Only if (k+1)-th crashed domain
manager (k+1 < n) can be taken over by any other live
domain managers, the theorem is true in case that
|SCDM|=k+1. The following case is the same as the base
case mentioned above.
By induction, even after |SCDM| concurrent domain
manager failures occur, our mechanism allows their
monitoring functions to be taken over other surviving ones.

Theorem 2. Our mechanism terminates within a finite
time.

Proof: As no more than |SCDM| (|SCDM| < n) domain
manager crashes occur, the proposed mechanism has only
to re-execute its takeover procedure at most up to |SCDM|
times as explained in theorem 1. Thus, the mechanism
terminates within a finite time.

4. Comparisons

Most of monitoring systems using mobile agents were
developed based on flat network infra-structure. Single
agent-based monitoring system proposed in [11] forces a
single agent to be created on the network manager and to
perform its task monitoring function according to the
itinerary consisting of its target nodes. It is simple to
implement, but not scalable because in large distributed
networks, the round-trip delay for the agent may become
significantly increasing, especially on polling frequently,
and its size, considerably large while visiting its target
nodes.
Corradi et al. [2] presented a segment-based monitoring
mechanism partitioning a network into a set of sub-
networks or domains and transferring a mobile agent to
each domain. This mechanism can reduce greatly its
overall monitoring response time by collecting and

filtering its management data per domain in parallel
compared with the single agent-based one [11].
Gavalas et al. [4] proposed a broadcast-based monitoring
mechanism, where the network manager instantiates and
migrates each a mobile agent to all managed nodes. After
the agent collects and analyzes the network traffic
information from the corresponding node, it returns to the
network manager platform with the requested information.
Thus, this mechanism maximizes the parallelism of its
monitoring process and achieves its short response time.
However, as the number of managed network elements or
resources extremely increases, a large number of mobile
agents are required. This feature may incur high agent
movement overhead by broadcasting and so degrade the
entire system performance remarkably.
All the mechanisms stated above may not overcome the
limitation of scalability fundamentally because of their
centralization nature. Also, this problem becomes getting
increasingly worse if expensive and low bandwidth links
are included in routing paths of agents.
Liotta et al. [7] introduced a scalable multi-level
monitoring mechanism based on the concept of
Management by Delegation (MbM) [6]. In other words,
this mechanism partitions a networked system into several
domains composing a hierarchical structure and deploys a
mobile agent to each of them.
A distributed java agent-based monitoring system JAMM
was proposed for grid computing in [12]. This system
enables monitoring sensors to execute by triggering their
execution based on actual client usage. Clients can control
remote sensors and obtain their requested information
from the sensors in the form of events.
In [9], a multi-agent based distributed monitoring system
is implemented composed of dynamically controllable
agents. The structure of the system is divided into three
layers to support independence among communication
protocols, message interpretation and monitoring tasks.
This independence among the three layers may reduce
agent development time and make
it easy to manage distributed systems.
However, these three mechanisms [7, 9, 12] cannot be
autonomously adaptable for dynamic changes such as
variations of network traffic patterns, resource addition
and deletion, changes of network topology and so on
because their structure of monitoring managers is static
after the initial agent deployment.
In [8], an adaptive and hierarchical mobile agent-based
monitoring mechanism was presented to address the above
mentioned problems. In this mechanism, each middle-level
manager agent is not bound to a particular network node
and be able to sense the network, find and move to better
locations for seeking monitoring location optimality.
But, among all the previously stated hierarchical mobile
agent-based mechanisms, no one addresses the failure

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 3, May 2010
www.IJCSI.org

7

detection and recovery issue for a hierarchy of monitoring
managers.
Tripathi et al. [13] presented a mobile agent-based
distributed monitoring system supporting autonomic
configuration and recovery. In this system, there are
several global failure detection agents subscribing to
heart-beat events from all monitoring agents. Thus, every
monitoring agent periodically sends its heart-beat message
to each global failure detection agent. If a monitoring
agent fails, one of global recovery agents in this system
executes the following recovery procedure: the recovery
agent instantiates the monitoring agent based on its most
recent configuration information and re-launches it to an
available node. Thus, if large-scale networks are assumed,
this feature results in high failure-free overhead due to the
centralized failure detection procedure. Additionally, the
takeover procedure of the global recovery agents in this
system is very unsuitable for maintaining a tree-like
monitoring manager structure efficiently. Also, this system
presented no concrete mechanism to have the hierarchical
structure of monitoring managers adaptable for its correct
and efficient failure detection in case of agent creation,
migration and destruction caused by the dynamic changes
within its entire network.

5. Conclusions

This paper presented a novel fault-tolerance mechanism to
have the following advantageous features appropriate for
large-scale and dynamic hierarchical mobile agent-based
monitoring organizations. It supports fast failure detection
functionality with low failure-free overhead by each
domain manager transmitting heart-beat messages to its
immediate higher-level manager. Also, it minimizes the
number of non-faulty monitoring managers affected by
failures of domain managers. Moreover, it allows
consistent failure detection actions to be performed
continuously in case of agent creation, migration and
termination, and is able to execute consistent takeover
actions even in concurrent failures of domain managers.

References
[1] H. Asgari, P. Trimintzios, M. Irons, G. Pavlou, S. Berghe,

and R. Egan, "A Scalable Real-time Monitoring System for
Supporting Traffic Engineering", in Proc. of the IEEE
Workshop on IP Operations and Management, Dallas, USA,
2002.

[2] A. Corradi, C. Stefanelli, and F. Tarantino, "How to Employ
Mobile Agents in Systems Management", in Proc. of the 3rd
Int. Conf. on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM’98), 1998, pp. 17-26.

[3] A. Fuggetta, G.P.Picco, and G. Vigna, "Understanding Code
Mobility", IEEE Transactions on Software Engineering, Vol.
24, No. 5, 1998, pp. 342-361.

[4] D. Gavalas, D. Greenwood, M. Ghanbari, and M. O’Mahony,
"Complimentary Polling Modes for Network Performance
Management Employing Mobile Agents", in Proc. of the
IEEE Global Communications Conference (Globecom’99),
1999, pp. 401-405.

[5] D. Goderis, S. Bosch, and Y. T’Joens, "A Service-Centric IP
Quality of Service Architecture for Next Generation
Networks", in Proc. of the IEEE/IFIP Network Operations
and Management Symposium, 2002, pp. 139-154.

[6] G. Goldszmidt, and Y. Yemini, "Delegated Agents for
Network Management", IEEE Communication Magazine,
Vol. 36, No. 3, 1998, pp. 66-70.

[7] A. Liotta , G. Knight, and G. Pavlou, "Modelling Network
and System Monitoring Over the Internet with Mobile
Agents", in Proc. of the IEEE/IFIP Network Operations and
Management Symposium (NOMS’98), 1998, pp. 303-312.

[8] A. Liotta , G. Pavlou, and G. Knight, "Exploiting Agent
Mobility for Large-scale Network Monitoring", IEEE
Network, 2002, pp. 7-15.

[9] S. Kwon, and J. Choi, "An Agent-based Adaptive Monitoring
System", Lecture Notes In Artificial Intelligence, Vol. 4088,
2006, pp. 672-677.

[10] J. Philippe, M. Flatin, and S. Znaty, "Two Taxonomies of
Distributed Network and System Management Paradigms",
Emerging Trends and Challenges in Network Management,
2000.

[11] G. Susilo, A. Bieszczad, and B. Pagurek, "Infrastructure for
Advanced Network Management based on Mobile Code", In
Proc. of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’98), 1998, pp. 322-333.

[12] B. Tierney, B. Crowley, D. Gunter, J. Lee, and M.
Thompson, "A Monitoring Sensor Management System for
Grid Environments", Cluster Computing Journal, Vol. 4, No.
1, 2001, pp. 19–28.

[13] A. Tripathi, D. Kulkarni, H. Talkad, M. Koka, S. Karanth, T.
Ahmed, and I. Osipkov, "Autonomic Configuration and
Recovery In A Mobile Agent-based Distributed Event
Monitoring System", Software Practice and Experience, Vol.
37, 2007, pp. 493–522.

Jinho Ahn received his B.S., M.S. and Ph.D. degrees in
Computer Science and Engineering from Korea University, Korea,
in 1997, 1999 and 2003, respectively. He has been an associate
professor in Department of Computer Science, Kyonggi University.
He has published more than 70 papers in refereed journals and
conference proceedings and served as program or organizing
committee member or session chair in several
domestic/international conferences and editor-in-chief of journal of
Korean Institute of Information Technology and editorial board
member of journal of Korean Society for Internet Information. His
research interests include distributed computing, fault-tolerance,
sensor networks and mobile agent systems.

